Radioe fhaek

GETTING




TERMS ANO CONDITIONS OF SALE AND LICENSE OF RADIO SHACK AND TANDY COMPUTER
EQUIPMENT AND SOFTWARE PURCHASED FROM A RADIO SHACK COMPANY-QWNED COMPUTER
CENTER. RETAIL STORE OR FROM A RAQIO SHACK FRANCHISEE OR DEALER AT i75
AUTHORIZEO LOCATION

LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A CUSTOMER assumes full responsibibity that this computer lardware purchased ithe Equpment 1 and any
coples of software included with the Equspment or hicensed separately ithe * Software ) meels Uie specilica-
tions. capacity. capabsiities. versatiity, and other requirements of CUSTOMER

B. CUSTOMER assumes fuil responsibility for the conditor and effectiveness of the gperating envronmient in
which the Equipment and Software are to function. and for sts instaiat:on

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A For a period of ninety (30} calendar days from the date of the Radio Shack sales docuiment recewved upon
purchase of the Equipment. RADIO SHACK warrants to the original CUSTOMER that the Equipment and the
medium upon which the Software is stored is free from manufacturing defects. THIS WARRANTY |S ONLY
APPLICABLE TO PURCHASES OF RAQIO SHACK AND TANOY EQUIPMENT BY THE ORIGINAL CUSTOMER
FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS. RETAIL STORES ANO FROM RAOIO
SHACK FRANCHISEES AND OEALERS AT ITS AUTHORIZEO LOCATION, The warranty s voud f the
Equipment’s case or cabinet has been opened. or if the Equipment or Software has been subjected to
improper of abnormal use. If a manufactuning defect 15 discovered during the stated warranty period. the
defective Equpment must be returned to & Radio Shack Computer Center. a Radio Shack tetall store.
participating Radio Shack franchisee 0t Radio Shack dealer for repair. along with a copy of the sales
document or lease agreement. The onginal CUSTOMER'S sole and exclusive remedy in the event of a defect
1s hmited to the correction of the defect by repair. replacement. or refund of the purchase price. at RADIO
SHACK'S election and sole expense. RADIO SHACK has no obligation to replace or 1epair expendable items
RADIO SHACK makes no warranty as to the design. capabibity, capacty. or sutabity for use of the
Software, except as provided in this paragraph. Software is icensed on an “AS IS basis. without
warranty. The original CUSTOMER'S exclusive remedy. in the event of 4 Software manufacturing defect. s
its reparr or replacement within thirty {301 calendar days of the date of the Radie Shack sales document
received upon license of the Software. The defective Software shali be returned to a Radio Shack Computer
Center, a Radio Shack retal store. participating Radio Shack franchisee or Radio Srack dealer along with
the sales document.

Except as provided herein no employee. agent. franchisee, dealer of other person :s authorized to give any
warranties of any natute on behaif of RAOIO0 SHACK

EXCEPT AS PROVIOEO HEREIN. RADIO SHACK MAKES NO EXPRESS WARRANTIES, ANO ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE IS LIMITED IN ITS
QURATION TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH HEREIN

Some states do not allow limitations on how long an 'mphed warranty lasts, so the above bmitation{s) may
not apply to CUSTOMER.

LIMITATION OF LIABILITY

A EXCEPT AS PROVIOEQ HEREIN. RAOIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO
CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY. LOSS OR DAMAGE
CAUSEQ OR ALLEGEQ TO BE CAUSEQ OIRECTLY OR INOIRECTLY BY "EQUIPMENT ™ OR "SOFTWARE"
SOLO. LEASEQ, LICENSED OR FURNISHEQ BY RADIO SHACK. INCLUDING, BUT NOT LIMITED TO. ANY
INTERRUPTION OF SERVICE. LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL
DAMAGES RESULTING FROM THE USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE " IN NO
EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFiTS. OR ANY INOIRECT. SPECIAL. OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTEQ WITH THE SALF. LEASE. LICENSE. USE OR ANTICIPATEO USE OF THE
“EQUIPMENT” OR “SOFTWARE".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES. RAOIO SHACK'S LIABILITY
HEREUNOER FOR OAMAGES INCURREQ BY CUSTOMER QR OTHERS SHALL NOT EXCEEQ THE AMOUNT
PAIO BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT ™ OR "SOFTWARE™ INVOLVED.

RADID SHACK shall not be hable for any damages caused by delay in dehvering or furmshing Equipment
and or Software.

No action ansing out of any claimed breach of this Warranty or transactions under this Warranty may be
brought more than two (2} years after the cause of act:on has accrued or more than four (4) years alter the
date of the Radio Shack sales document for the Equipment or Software. whichever first occurs.

Some states do not allow the timitation or exciusion of mcdental or consequent:al damages. so the above
limitation(s) or exclusion{s) may not apply to CUSTOMER.

RADIO SHACK SOFTWARE LICENSE

RAOID SHACK grants to CUSTOMER a non-exclusive, pard-up hcense to use the Scftware on one computer, subject

to the following provisions:

A Except as otherwise provided in this Software License, applicabie copyright iaws shall apply to the B
Software.

B Title to the medium on which the Software i1s recorded (cassette and or diskette: or stored (ROM) is
transferred to CUSTOMER, but not title to the Software.

C. CUSTOMER may use Software on one host computer and access that Sgftware through one or more

0

LT
T
2 i
o
L

1..

it
g

terminals if the Software permits this functon.
CUSTOMER shall not use, make. manufacture, or reproduce copies of Software exzept for use on one
computer and as 1s specifically provided i this Software License. Customer 1S expressly prohibited from .
disassembling the Software. g
CUSTOMER s permitted to make additional copies of the Software only for backup or archwval purposes or
\f additional copies are required in the operation of one computer with the Software. but only to the extent
the Software allows a backup copy to be made. However, for TRSDOS Software. CUSTOMER 15 permitted
to make a hmited number of additional copies for CUSTOMER'S own use. /
CUSTOMER may resell or distribute unmod:fied copies of the Software provided CUSTOMER has purchased
one copy of the Software for each one soid or distributed. Trie provisions of this Software License shall also
be applicable to third parties receiving copes of the Software from CUSTOMER.

G All copyright notices shall be retained on all copees of the Software

APPLICABILITY OF WARRANTY

A The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to 4
either a sale of the Equipment and or Software License to CUSTOMER or to a transaction whereby RAQIO §
SHACK sells or conveys such Equipment to a third party for lease to CUSTOMER.
The umitations of hability and Warrarty provisions herein shall inure to the benefit of RADIO SHACK. the
authgr, owner and or licensor of the Software and any manufacturer of the Equipment sold by RADIO
SHACK.

STATE LAW RIGHTS

The warianties granted herein give the original CUSTOMER specific fegal rights. and the original CUSTOMER may

have other rights which vary from state to state.




Getting Started with Extended Color BASIC:
© 1984 Tandy Corporation, Fort Worth, Texas 76102 U.S.A.
All Rights Reserved.

Reproduction or use, without express written permission from Tandy Corporation, of any
portion of this manual is prohibited. While reasonable efforts have been taken in the prep-
aration of this manual to assure its accuracy, Tandy Corporation assumes no liability re-
sulting from any errors or omissions in this manual, or from the use of the information
contained herein.

TRS-80 Extended Color BASIC System Software:
© 1984 Tandy Corporation and Microsoft.
All Rights Reserved.

The system software in the Color Computer is retained in a read-only memory (ROM) for-
mat. All portions of this system software, whether in the ROM format or other source
code form format, and the ROM circuitry, are copyrighted and are the proprietary and
trade secret information of Tandy Corporation and Microsoft. Use, reproduction, or publi-
cation of any portion of this material without the prior written authorization by Tandy Cor-
poration is strictly prohibited.

10987654321



To All New Customers . ..

If you don’t know a thing about computers, relax — this book’s for you! It
has you ""program’’ your computer using its own language — Extended
Color BASIC. You'll start a little crazy by:

Composing music Playing games
Conducting light shows Painting pictures
If you're straight business, be patient. Having fun’s the fastest way to learn.

So spend a few hours with your computer. Type whatever you want, Play
with it. Be bold and strange. In other words . . . feel at ease! You have an
amazing tool to command.

And to All Upgrading Customers . . .

Welcome back to the Color BASIC family! Let us introduce you to . . . slight
drum roll, please . .. Extended Color BASIC. It has all the features of
non-Extended Color BASIC plus much more.

For example, with Extended Color BASIC you can:

Draw a circle Edit a line
Paint a house Square a root
Cool off with a cube Play a symphony

And even try a triangle!

If you've read Getting Started with Color BASIC, you can skip half this
book:

Skip Section | except for Chapter 9. Chapter 9 shows how to use the
Extended Color BASIC "Editor’’ — a great time-saver in typing prog-
rams,

Read Section II. You'll learn to use the most exciting features of
Extended Color BASIC — high-resolution graphics and music.

Skip Section III.

Read Section IV. This shows how to use the rest of Extended Color
BASIC’s expanded features.



This Is How to Start . ..

Connect your computer by referring to your Introducing Your Color Com-
puter 2 or Introducing Your Deluxe Color Computer.

Then power up your computer:

1. Turn on your television set

2. Select Channel 3 or 4 on the television set.
3. Set the antenna switch to COMPUTER.
4

Turn on the computer. The POWER button is on the left rear of your
keyboard (when you’re facing the front).

This message appears on your screen:

EXTENDED COLOR BASIC v.r,
© 198B@ TANDY
OK

(v.r. is two numbers specifying which version and release you have.)
If you don't get this message:
Turn the computer on and off again.
Adjust the brightness and contrast on your television set.
Check all the connections.

If you still don’t get this message, refer to "’ Troubleshooting and Mainte-
nance” in Introducing Your Color Computer 2 or Introducing Your Deluxe
Color Computer.

Once you do get the above message, you're ready to start.



How Do You Talk to a Computer?

In this book, you'll learn how to talk to your computer. That's all program-
ming is, by the way. Once you learn how to talk to your computer, you can
tell it to do whatever you want. (Well, almost.)

Your computer understands a language called Extended Color BASIC. This
is an enhanced form of BASIC — Beginners All-Purpose Symbolic Instruc-
tion Code. There are lots of computer languages. Extended Color BASIC
just happens to be the one your computer understands.

we'll introduce BASIC words in the order that they’re easiest to learn.
When you get midway in the book, you may forget what a word means. If
this happens, simply look it up in your Quick Reference Card.

-
- - - —— o

- ———







Chapter 1

Chapter 2

Chapter 3

Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12

Chapter 13

CONTENTS

Section | THE BASICS

Meet your Computer .. ................ ...t 13
PRINT SOUND CLS

Your Computer Never Forgets

(...unlessyouturnitoff .. ). .................. 19
Strings Variables
See How Easy It ls? ... ... ... .. ... .. ... ..... 24

NEW INPUT GOTO RUN PRINT, PRINT;
LIST IF/THEN

CounttheBeat....... ... ... .. . 30
FOR...TO...STEP NEXT

WatchtheClock ........ ... ... ... ... .. ....... 35
cLs Nested Loops

Decisions, Decisions . .. ...................... 40
IF/THEN END

GamesofChance ......... ... ... 43
RND PRINT(@

Reading ...... ... i 47
DATA READ RESTORE INT CLEAR

WIHIING o e e 53
EDIT DEL RENUM

Arithmetic ... . . 60
GOSUB RETURN REM

Words, Words, Words . .. ........ ... . . ... 65
LEN LEFT$ RIGHT$ MID$

APopQuiz ... .. .. .. 71
INKEY$ VAL

MoreBasiCs . ... 75

STOP SGN CONT ABS MEM STR$ AND OR



Section Il SIGHTS AND SOUNDS

Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23

Chapter 24

Let's Gettothe Point ......................... 85
PSET PRESET PPOINT

Hold ThatLline............................... 89
LINE COLOR

The Silver Screen........ ... ... ... ... ....... 95
SCREEN PCLS

Minding Your PModes . ....................... 98
PMODE

Finding the Right Page ........................ 102
PCLEAR PMODE PCOPY

GoinginCircles. ............................. 107
CIRCLE

The Big Brush-Off .. ... ... ... ... .......... 112
PAINT

Draw the Line Somewhere . .................... 115
DRAW

Get and Put: The Display Went That Array ...... 123
GET PUT

ANew Kindof Point.......................... 127
SET RESET JOYSTK PEEK

Play It Again, TRS-80 ......................... 133
PLAY

Section Il GETTING DOWN TO BUSINESS

Chapter 25
Chapter 26
Chapter 27

Chapter 28
Chapter 29

Taping ... 145
OPEN CLOSE PRINT#-1 INPUT#-1 EOF
ManagingNumbers. . .............. .. ... L. 150
DIM  Arrays

ManagingWords . ........... ... ... ..., .. 155
LLIST PRINT#-2 String Arrays

Sorting ... 159
Analyzing ... ... .. 162

Multidimensional Arrays



Section IV BACK TO BASICS

Chapter 30 The Numbers Game .. .......oveieeiiniann.. 171
SQR SIN COS TAN ATN LOG EXP FIX DEF FN

Chapter 31 it Don’t Mean a Thing

If It Aint Got That String . ..................... 180
STRING$ INSTR MID$

Chapter 32 in One Door and Out the Other................ 186
LINE INPUT PRINT USING POS

Chapter 33 A Little Byte of Everything ..................... 193
LET TRON TROFF TIMER HEX$

Chapter 34 Using Machine-Language Subroutines ........... 197

USRN DEF  USRN VARPTR Memory Map

Section V ODDS AND ENDS

Suggested Answers to Do-lt-Yourself Programs .................. 207
Sample Programs ... ... 226
ASClH Character Codes ... ....viueie e 241
Graphics Screen Worksheet ...... ... .. .. .o 244
SET/RESET Worksheet .. .. ... .. i 247
PRINT@ Worksheet . ... ... ..o e 248
Extended Color BASIC Colors .. ... 249
Extended Color BASIC Error Messages . . .. .ovvvveenn v, 250
Mathematical Formulas . ... ..o i 252
Derived FUNCHONS .« . oottt e e e et 253
Color Computer Line Printer Variables ......................... 255
ROM ROULINES ottt et e e e e e e 257
BASIC SUMMAIY .o\ttt et ettt 260






SECTION |

THE BASICS

In this section you'll learn how to program. Before you start, though, put
yourself in the right frame of mind . . .

Don't try to do everything the "“correct”” way. Don't try to understand
everything. Above all, please don’t take our word for anything!

Do have fun with your Color Computer. Try out your own ideas. Prove us
wrong (if you can). Type anything and everything that comes to mind.

Ready? Turn the page and begin.






CHAPTER 1

MEET YOUR COMPUTER

Have you connected and turned on your computer? Are you ready to give
it a first workout?

This chapter and the next introduce you to your computer—the way it
thinks, some of its talents, and even a couple of its quirks. By the time you
reach Chapter 3, you'll be ready to program . .. promise!

Type whatever you want. Then press the (ENTER) key. Don’t worry about
anything but the last line of type on your screen. ft says:

OK
OK is the computer’s “prompt.” It's telling you, "OK, enough foolishness
... as soon as you are ready ... (It patiently waits for your command.)

You're the master—you tell the computer to do whatever you wish,

Give the computer your first command. Type this exactly as it is below:
PRINT "HI, I‘M YOUR COLOR COMPUTER"

When you reach the right side of your screen, keep typing. The fast part of
the message appears on the next line.

Now check your line. Did you put the quotation marks where we have
them? If you made a mistake, no problem. Simply press the (=) key and the
last character you typed disappears. Press it again and the next to the last
disappears (. .. and so on and so on . . .).

=)

All letters you type should be
BLACK with a GREEN
BACKGROUND., If they're
reversed (green with a black
background), press the
and (@) (zero) keys at
the same time.

13



See the blinking light?
Wherever you see it, you can
type something.

14

Ready? This should be on your screen:

0K
PRINT "HI+» I‘'M YOUR COLOR COMPUT
ERU
Press the (ENTER) key and watch. Your screen should look like this:
0K
PRINT "HI,s I‘M YOUR COLOR COMPUT
ERU
HI» I‘M YOUR COLOR COMPUTER
0K
\ /

Your computer just obeyed you by printing the message you have in
quotes. Have it print another message. Type:

PRINT "2

Press (ENTER). The computer again obeys you and prints your next
message:

2

Try another one:
PRINT "2 + 2" (ENTER
The computer obeys you by printing:

o+ 2

You probably expect much more than an electronic mimic . . . maybe
some answers! Give your computer some numbers without the quotation
marks. Type:

PRINT 2 + 2
Much better. This time the computer prints the answer-
4



The quotation marks obviously have a meaning. Experiment with them
some more. Type each of these lines:

PRINT 5+4 ENTER

PRINT "S5+4"

PRINT "S5+4 EQUALS" 5+4
PRINT /2 "IS B/2"
PRINT "B/2"

PRINT 8/2 (ENTER)

Any conclusions on what the quotes do?

RULES ON STRINGS v NUMBERS

The computer sees everything you type as strings or numbers. Ifit'sin
quotes, it's a string. The computer sees it exactly as it is. If it's not in
quotes, it's a number. The computer figures it out like a numerical
problem.

A Color Calculator, No Less!

Any arithmetic problem is a snap for the computer. Do some long division.
Type:

PRINT "3862 DIVIDED BY 13.2 I5" 38B62/13.2
Do a multiplication problem:

PRINT 1589 % 23

Notice that the computer’s multiplication sign is an asterisk (%), rather than
the sign you use in math (X). The computer’s so precise thatitwould getthe
X multiplication sign mixed up with the X alphabetical character.

Try a few more problems:

PRINT "15 % 2 = " 15+2 (ENTER
PRINT 18 # 18 "IS THE SQUARE OF 18" (ENTER
PRINT 33.3/22.8Z2 (ENTER

Now it's your turn. Write two command lines that print these two problems
as well as their answers:

157 /7 13.2 =
95 % 43 =

DO-IT-YOURSELF COMMAND LINES

The computer thinks of
quotes as a journalist does. If
the number’s in quotes, the
computer must PRINT it ex-
actly as it appears. If it's not
in quotes, the computer can
interpret it by adding, sub-
tracting, multiplying, or di-
viding it.

=

Notice how the computer
handles parts in quotes v

parts not in quotes.

15



(=

Actually, there’s no “cor-
rect’” command line. For
that matter, there is no cor-
rect way of handling your
computer. There are many
ways of getting it to do what
you want. Relieved? .
Good!

(=

If you don’t get the right col-
ors, refer to the color test in
Introducting Your Color
Computer 2.

16

If you use the “correct’”” command lines, this is what the computer prints on
your screen:

137 7 13.2=11,8939384
95 % 43 = 4985

Ready for the answers:

PRINT "157 / 13.2 =" 157/13.72
PRINT "95 # 43 =" 95%43

It Has Its Rules . ..

By now, the computer has probably printed some funny little messages on
your screen. If it hasn't, type this line, deliberately misspelling the word
PRINT: .

PRIINT "HI" (ENTER
The computer prints:
75N ERROR

?SN ERROR stands for ““syntax’” error. This is the computer’s way of saying,
"The command 'PRIINT" is not in my vocabulary . . .1 have no earthly idea
what you want me to do.”” Any time you get the ?SN error, you probably
made some kind of typographical mistake.

The computer also gives you error messages when it does understand what
you want it to do, but it feels you're asking it to do something that is
illogical or impossible. For instance, try this:

PRINT S/@
The computer prints:
/@ ERROR
which means, “Don't ask me to divide by O—that’s impossible!”

If you get an error message you don’t understand, flip to the Appendix.
We've listed all the error messages there and what probably caused them.

It’'s a Show-off Too

Sofar, all you've seen your computer do is silently printon a green screen.
But your color computer enjoys showing off. Type:

CLS(3) (ENTER

Now your screen is a pretty shade of blue with a green stripe at the top.
Your command told the computer to clear the screen and print color
number 3—blue.

But why the green stripe? Whenever the computer prints characters, it must
use a green background, not a blue background. Type some more charac-
ters. The computer uses a green background for them also.

Colors other than green are for printing pictures. You'll learn how to do that
later,



Press (ENTER) to get the OK prompt. Then type:
CLS(7)

Now your screen is magenta (pinkish purple) with a green stripe at the top.
Try some more colors. Use any number from O to 8. The Color Computer
has nine colors. Each color has a numeric code.

Type CLS without a number code:
CLS (ENTER

If you don’t use a number code, the computer assumes you simply want a
clear green screen.

Computer Sound Off—One, Two . ..

Type this:
SOUND 1+ 1002
If you don’t hear anything, turn up the volume and try again.

What you're hearing is 6 seconds of the lowest tone the computer can
hum. How about the highest tone? Type:

SOUND 255+ 100 (ENTER

OK, so it has a good "hum-range’’ . . . hope you're suitably impressed. Try
some other numbers. Hope you like the computer’s voice (it's the only one
it has).

You want to know what the other number is for? (Or maybe you've already
found out.) The second number tells the computer how long to hum the
tone. You can use any number from 1 to 255. Try 1:

SOUND 128+ 1 (ENTER
The computer hums the tone for about 6/100ths of a second. Try 10:
SOUND 128, 1@ (ENTER

The computer sounds the tone for 6/10ths of a second. Try variations of
both numbers, but keep in the range of 1 to 255.

BUG: If you see a message
saying MICROSOFT, or if
you see a ?FC Error message,
you’re using a number other
than O through 8.

BUG: Again, if you geta ?FC
Error message, you're using
a number other than 1
through 255.

17




Curious about the reversed
colors? They're for people
with a Color Computer 2
and a printer. The printer
prints all “’reversed” letters
in lowercase.,

| =

If you have a Deluxe Color
Computer, your computer
can understand commands
in “reversed” or "’lower-
case’ type. See Introducing
your Deluxe Color Com-
puter to learn how to get in
the upper/lower case mode.

18

Before You Continue. ..

Press the and (@) (zero) keys, holding both down at the same time.
Now release them and type some letters. The letters you type should be
green on a black background. If they're not, try again, pressing
slightly before (@). Be sure to hold down both keys at the same time and
then release them.

Now, with the colors “"reversed,’” press (ENTER) and then type this simple
command line:

PRINT "HI" (ENTER

The computer gives you a 2SN ERROR. It doesn’t understand the
command.

Press the (SHIFT) and (@) characters again and release them. Type some
letters. They should be back to normal: black with the green background.

Press (ENTER) and type the same command line again. This time it works.

The computer can’t understand any commands you type with reversed
colors. If you ever press SHIFD(0) by mistake and find you're typing with
these reversed colors, press SHIFD(Q) again to get the colors back to
normal.

Learned in Chapter 1

BASIC WORDS KEYBOARD CONCEPTS
CHARACTERS
PRINT string v numbers
SOUND ENTER error messages
CLS

A refresher like this is at the end of each chapter. It helps you make sure
you didn’t miss anything.

Notes




CHAPTER 2

YOUR COMPUTER NEVER
FORGETS

(. . . unless you turn it
off . ..)

One skill that makes your computer so powerful is its “’memory.”” Have it
“remember’’ the number 13. Type:

A = 13 (ENTER

Now “confuse”” the computer by typing whatever you want. When you're
done, press (ENTER). See if the computer remembers what A means by
typing:

PRINT A

Your computer remembers that A is 13 as long as you have iton . . . or until
you do this. Type:

A =17.Z2 (ENTER
If you ask it to PRINT A now, it prints 17.2.

This is what happened in your computer’s memory:

YOUR COMPUTER’S MEMORY

You don’t have to use the letter A. You can use any letters from A to Z. In
fact, you can use any two letters from A to Z. Type:

15 (ENTER
20 (ENTER
L = 25 (ENTER

B
C
B

Did it get confused? or
forget?

If you already know BASIC,
you may be accustomed to
using the word LET before
these command lines. The
Color Computer doesn’t let
you use the word LET.

19



Have it print all the numbers you've asked it to remember. Type:

PRINT A» B» Cs BC

If you want the computer to remember a “string’’ of letters or numbers, use
a letter with a dollar sign ($). Type:

A% = "TRY TO"
B4 = "REMEMBER"
C$ = "THIS, YOu"
BC$ = "GREAT COMPUTER"
To the computer, a dollar Then type:
sign means a string. PRINT A%+ B%,» C%, BC%

"Computer types’”’ have a name for all the letters you've used: ‘'vari-
ables.” So far, you've used these variables:

YOUR COMPUTER’S MEMORY
NUMBERS CHARACTERS

o A—=17.2 A$—""TRY TO"
o B—15 B$ — "REMEMBER"’
O C—20 C$—""THIS, YOU"’

BC —25 BC$— "GREAT COMPUTER”

Spot-check the above variables to see if the computer remembers the right
information. For instance, to see if BC still contains 25, type:

Try to set the computer to

remember a letter we
haven't used yet. What hap- PRINT BC
? Interesting . . . . . . ) . . )
pens? Interesting Think of variables as little boxes in which you can store information. One

set of boxes is for strings; the other set’s for numbers. Each box has a label.

As we said before, the com-
ter has its rul d migh

et lite fussy with you i The Computer Is Fussy About Its Rules

you don’t play by them.

Do you think the computer accepts these lines?

D= "G" ENTER
Z="THIS IS5 STRING DATA" (ENTER

£

TM stands for Type Mis-
%Sff,’t’giﬂg;‘té; ';'Le,igs you The computer responds to both above lines with 2ZTM ERROR. It's telling
you that you have to play by its rules.

20



The rules “ignored” by the above lines are:

RULES ON STRING DATA
(1) Any data in quotes is STRING DATA.
{2) You can assign STRING DATA only to variables WITH A $ SICN.

To make the above lines obey the computer’s rules, use a dollar sign with

the D and Z. Type:

D¢ = "G" (ENTER
Z% = "THIS IS5 STRING DATA" (ENTER

The computer now accepts these lines.
How about this line? Do you think the computer accepts it?

D% = & (ENTER

The above line ignored these rules:

RULES ON NUMERIC DATA
(1) Numbers not in quotes are NUMERIC DATA.

{2) Numeric data can only be assigned to variables WITHOUT A §
SIGN.

Type this, which the computer accepts:

& (ENTER
12 (ENTER

You've now added this to your computer’s memory.

YOUR COMPUTER’S MEMORY

NUMBERS  STRINGS

D_> 6 D$_> //6//
Z—=12 Z$ —""THIS IS STRING DATA"”

o
OO

Now do something interesting with what you've asked the computer to

remember. Type:

PRINT D # 2
The computer prints the product of D times 2.
Try this line:

PRINT Z2/D

The computer remembers
that D = 6.

21



22

The computer prints the quotient of Z divided by D.
Would this work?
PRINT D% # 2 (ENTER

Did you try it? This makes the computer print the same ?TM ERROR. Jt
cannot multiply string data.

Cross out the commands below that the computer rejects:

EXERCISE WITH VARIABLES
F =22,9999999
M ="ig,z"
DZ$ = "REMEMBER THIS FOR ME"
M$ = 15
Z =F+F

Finished? These are the commands the computer accepts.

F=22,9999999
DZ$ = "REMEMBER THIS FOR ME"
Z=F+F

RULES ON VARIABLES

You may use any two characters from A to Z for a variable. The first
character must be a letter from A to Z; however, the second may be
either a numeral or a letter. If you want to assign it string data, put a
dollar sign after it. Otherwise, it can hold only numeric data.

Learned in Chapter 2
CONCEPTS

Variables
String v Numeric Variables

Now that you've learned how the computer thinks, it will be easy to write
some programs. How about a break, though, before going to the next
chapter?



Notes

23



24

CHAPTER 3

_ SEE HOW EASY IT I5¢

Type:
NE W

This erases whatever may be in the computer’s "memory.”

Now type this line. Be sure you type the number 10 first—that’s important.
1¢ PRINT "HIs I'M YOUR COLOR COMPUTER"

Did you press (ENTER)? Nothing happened, did it? Nothing you can see, that
is. You just typed your first program. Type:

RUN (ENTER

The computer obediently runs your program. Type RUN again and again
to your heart’s content. The computer runs your program any time you
wish, as many times as you wish,

Since this works so well, add another line to the program. Type:
2¢ PRINT "WHAT IS YOUR NAME?" (ENTER

Now type:
LIST (ENTER

Your computer obediently lists your entire program. Your screen should
look exactly like this:

1@ PRINT "HI, I'M YOUR COLOR COM
PUTER"
20 PRINT "WHAT IS YOUR NAME?"

What do you think will happen when you run this? Try it. Type:
RUN
The computer prints:

HIs I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?



Answer the computer’s question and then press (ENTER). . . . What? There’s
the 2SN Error again.

When you simply type your name, the computer doesn’t understand what
you mean. In fact, the computer can’t understand anything unless you talk
to it in its own way.

Use a word the computer understands: INPUT. Type this line:
30 INPUT A% (ENTER

This tells the computer to stop and wait for you to type something, which it
fabels as A$. Add one more line to the program:

40 PRINT "HI +" A% (ENTER

Now list the program again to see if yours looks like mine. Type:

LIST (ENTER

Your program should look like this:

10 PRINT "HI+ I‘M YOUR COLOR COM
PUTER"

20 PRINT "WHAT IS YOUR NAME?"

30 INPUT A%

490 PRINT "HI " A%

Can you guess what will happen when you run it? Try it:

RUN (ENTER

That worked well, didn't it? This is probably what happened when you ran
the program (depending on what you typed as your name):

HI» I'MYOUR COLOR COMPUTER
WHAT IS YOUR NAME?

7 JANE

HI: JANE

RUN the program again using different names:

HI, I‘'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?

? HUGO

HI s HUGO

HI:» I'MYOUR COLOR COMPUTER
WHAT IS YOUR NAME?
?772-36-8B2Z28

HI,» 722-36-8228

HI, I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?

7 NONE OF YOUR BUSINESS

HI: NONE OF YOUR BUSINESS

HI:» I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?

PIGET IT!!

HI, I GETIT!!

(The computer doesn’t care what you call yourself.)

Here’s what Line 30 did to your computer’s memory each time you ran the
program (assuming you gave it the same names we did):

If you make a mistake after
pressing (ENTER), simply
type the line over again.

25



To delete a program line,
simply type and
the line number. For
example:
50 ENTER
erases line 50 from the
program.

We're leaving out the “HI”
part this time.

26

YOUR COMPUTER’S MEMORY

JANE
HUGO

772-36-8228

NONE OF YOUR BUSINESS
P GET IT!!

There’s an easier way to run your program over and over without having to
type the RUN command. Type this line:

5¢ GOTO 10
00000000000

O '®)
BN A VRS
OOQOOOOOOOO

Now run it. The program runs over and over again without stopping.
GOTO tells the computer to go back to Line 10:

19 PRINT "HI: I'M YOUR COLOR COMPUTER™
20 PRINT "WHAT IS YOUR NAME™"

- 3@ INPUT A%

49  PRINT "HI," A%
30 GOTD 10

Your program now runs perpetually. Each time it gets to Line 50, it goes
back to Line 10. We call this a “’loop.” The only way you can stop this
endless loop is by pressing the (BREAK) key.

Spotlight Your Name

Change Line 50 to give your name the attention it deserves. How do you
change a program line? Simply type it again, using the same line number.

Type:
5S¢ GOTO 40

This is what the program looks like now:
1@ PRINT "HI: I‘M YOUR COLOR COMPUTER"
20 PRINT "WHAT IS5 YOUR NAME?"
30 INPUT A%
-S40 PRINT "HI," A%
-~ 5@ GODTOD 40
Type RUN and watch what this loop does. When you’ve seen enough,
press the (BREAK) key.
There’s a big change you can make simply by adding a comma or a
semicolon. Try the comma first. Type Line 40 again, but with a comma at
the end:

490 PRINT A%,

Run the program. The comma seems to print everything in two columns.

Press (BREAK) and try the semicolon. Type:



49 PRINT A%

and run . . . You probably won't be able to tell what the program’s doing
until you press (BREAK). See how the semicolon crams everything together?

RULES ON PRINT PUNCTUATION

This is what punctuation at the end of a PRINT line makes the

computer do:
1. A comma makesthe computer go to the next column. Use itto print

in columns.
2. Asemicolon makes the computer stay where it is. Use it to “’cram”

what you print together.
3. No punctuation makes the computer go to the next line. Use it to

print in rows.

Color/Sound Demonstration

Want to play with color and sound some more? First, erase memory.
Remember how?
Then enter this program:

1@ PRINT "TO MAKE ME CHANGE MY TONE"
20 PRINT "TYPE IN A NUMBER FROM 1 TO 255"

30 INPUTT
49 SOUND T, S50
50 GOTO 10

Run through the program to get a sample of the computer’s tones.

BUG: If you get a 2FC Error when you run this program, you used a number
other than 1 through 255. This error, like all errors, will make the computer
stop running the program.

What happens if you change Line 40 to:
40 SOUND 5@, T
HINT: Look back in Chapter 1 where we talk about SOUND.

Know the answer? If you make the above change, the computer hums
the same tone each time, but for a different length of time, depending
on what number you use.

DO-IT-YOURSELF PROGRAM

Press first and then erase this program by typing NEW. Now see
if you can write a program, similar to the one above, to make the
computer show a certain color. Remember, there are 9 colors, 0
through 8.

HINT: Line 40 could be: 40 CLS(T).

Remember, if you make a
mistake on one of the lines,
simply type the line over’
again.

NEW (ENTER . . . wish
mine worked that easily!

In this program we’re using
T as a variable. However,
we could use any letter.

Notice that line 30 asks for
T rather than T$. This is
because we want numeric
data rather than string data.

=

27




Press (BREAK) before typing
the line.

Don’t worry about IF/THEN
right now. We devote a
whole chapter to it later.

L=

28

This is our program:

19 PRINT "TO MAKE ME CHANGE MY COLOR"
20 PRINT "TYPE A NUMBER BETWEEN @ AND 8"

30 INPUTT
49 CLS(T)
30 GOTO 1@

Add Polish to the Program

Pressing the (BREAK) key is a sloppy way to stop the program from running.
Why not have the computer politely ask if you're ready to end? Change
Line 50 in the above program to:

3@ PRINT "DO YOU WANT TO SEE ANOTHER COLOR™"

Then add these lines:

6@ INPUT R%
70 IF R% = "YES" THEN 20

Run the program. Type YES and the program keeps running. Type anything
else and the program ends.

This is what the program looks like now:
12 PRINT "TO MAKE ME CHANGE COLORS"
#2220 PRINT “TYPE A NUMBER BETWEEN @ AND 8"

30 INPUTT

4¢ CLS(T)
S@ PRINT "DO YOU WANT TO SEE ANOTHER COLOR"

B0 INPUT R$
“~70 IF R$ = "YES" THEN 20

This is what the new lines do:
« Line 50 prints a question.
: Line 60 tells the computer to stop and wait for an answer: R$.

: Line 70 tells the computer to go back to Line 20 IF (and only if)
your answer (R$) is "'yes.” If not, the program ends, since it has
no more lines.

You've covered a lot of ground in this chapter. Hope we're just whetting
your appetite for more.

Don’t worry if you don’t yet understand it perfectly. Just enjoy using your
computer,

Learned in Chapter 3
BASIC WORDS CONCEPT KEYBOARD

Characters How to Change and Delete a

NEW Program Line

INPUT

GOTO
RUN

PRINT,

PRINT;
LIST

IF/THEN




Notes

29



The logic of this will become
clear later.

(=

Remember to type NEW
ENTER) before typing a new
program.

30

CHAPTER 4

COUNT THE BEAT

In this chapter you'll experiment with computer sound effects. Before
doing this, you need to teach the computer to count.

Type:
18 FORX=1TO 1@
20 PRINT "X =" X

3¢ NEXT X
4¢ PRINT "I HAVE FINISHED COUNTING"

Run the program.

Run the program a few more times. Each time, replace Line 10 with one of
these lines:

18 FORX=1TO 100
128 FOR X =370 15
18 FORX=-2T702
10 FOR X =20 70 24

Do you see what FOR and NEXT make the computer do? They make it
count. Look at the last program we suggested you try:

18 FOR X =20 7024

28  PRINT "X =" X

38 NEXT X

4¢ PRINT "I HAVE FINISHED COUNTING"

Line 10 tells the computer the first number should be 20 and the last
number should be 24. It uses X to label all these numbers.

Line 30 tells the computer to keep going back to Line 10 for the next
number—the NEXT X——until it reaches the last number (number 24).



Look at Line 20. Since Line 20 is between the FOR and NEXT lines, the
computer must print the value of X each time it counts:

X =20
X =21
X =22
X =23
X =24

Add another line between FOR and NEXT:
15 PRINT "“.,, COUNTING ,.."

and run the program. With each count, your computer runs any lines you
choose to insert between FOR and NEXT.

DO-IT-YOURSELF PROGRAM 4-1

Write a program that makes the computer print your name 10 times.

HINT: The program must count to 10.

DO-IT-YOURSELF PROGRAM 4-2

Write a program to print the multiplication tables for 9 (9+1 through
9+10). :

HINT: PRINT 9+X is a perfectly legitimate program line.

DO-IT-YOURSELF PROGRAM 4-3

Write a program that prints the muitiplication tables for 9+1 through
9+25.

HINT: By adding a comma in the PRINT line, you can get all the
problems and results on your screen at once.

Finished? These are our programs:

Program 4-1 Program 4-2
12 FORX=1TD 10 10 FOR X =1TO 10
Z@ PRINT "THOMAS®" 2@ PRINT "Ox"x"="gxy
30 NEXT X 3@ NEXT X
Program 4-3

10 FOR X = 1 TO 25
20 PRINT "9%"X"="gx¥,
30 NEXT ¥

31



You may be wondering
about the programs you ran
at the first of this chapter
without using STEP. If you
omit STEP, the computer
assumes you mean STEP 1.

32

Counting by Twos

Now make the computer count somewhat differently. Erase your program
by typing NEW and then type the original program, using a new Line 10:

1¢ FORX=2TO 10 STEP 2
20 PRINT "X= " X

30 NEXT X

49 PRINT "I HAVE FINISHED COUNTING"

Run the program. Do you see what the STEP 2 does? It makes the computer
count by 2s. Line 10 tells the computer that:

The first X is 2
The last X is 10
...AND STEP 2 . ..

All the Xs between 2 and 10 are two apart . . . thatis2,4,6,8,and 10.
(STEP 2 tells the computer to add two to get each NEXT X.)

To make the computer count by 3s, make all the Xs three apart. Try this for
Line 10:

18 FORX=3TO 10 STEP 3

Run the program. This prints on your screen:

nonon
0O w

N N N
B LS

It passes up the last X (number 10) because 9 + 3 = 12. Try a few more
FOR ... STEP lines so you can see more clearly how this works:

18 FOR X =5T0 30 STEP 3
190 FORX=10T01 STEP-1
1i¢ FORX=1T0 20 STEP 4

Counting the Sounds

Now that you've taught the computer to count, you can add some sound.
Erase your old program and type this:



PRINT "TONE " X course. It’s there to help you

FOR X =170 253 Don't type the arrow, of
SOUND X 1 understand.

NEXT X

This program makes the computer count from 1 to 255 (by 1s). Each time it
counts a new number, it does what Lines 20 and 30 tell it to do:

Line 20—It prints X, the current count.
Line 30—It sounds X’s tone.
For example:

The first time the computer gets to FOR, in Line 10, it makes X equal
to 1.

Then it goes to Line 20 and prints 1, the value of X.
Then Line 30 has it sound tone #1.
Then it goes back to Line 10 and makes X equal to 2
Etc.
What do you think the computer will do if you make this change to Line 10:
1@ FOR ¥ = 255701 STEP ~1
Did you try it?

PROGRAMMING EXERCISE

Using STEP, change Line 10 so the computer will sound tones
from:

(1) The bottom of its range to the top, humming every tenth note.
(2) The top of its range to the bottom, humming every tenth note.

(3) The middle of its range to the top, humming every fifth note.

10
10
10
Ready for the answers? Try this: To pause the pro-
10 FORX =1 T0 255 STEP 10 gram while Js runnne,
Vo= M press the GHIFD and @ keys
1@ FOR X =2557T01 STEP -10 at the same time. Then press
19 FOR X =128 70 253 §TEP 3 any key to continue.

DO-IT-YOURSELF PROGRAM 4-4

Now see if you can write a program that makes the computer hum:

(1) from the bottom of its range to the top, and then
(2) from the top of its range back to the bottom

The answer is in the back of this book.

33



34

But Can It Sing?

Yes. In Section II, you'll learn how to compose your favorite songs.

Learned in Chapter 4

BASIC WORDS KEYBOARD CHARACTER
FOR...TO...STEP
NEXT
Notes




CHAPTER 5
Watch the Clock

You're now ready to show your computer how to tell time. Type:

1¢ FORZ=1T0 462 * 2
20 NEXTZ
3@ PRINT "I COUNTED TO 92e"

Run the program. Be patient and wait a couple of seconds. Two seconds, to
be precise. It takes your computer two seconds to count to 920.

Lines 10 and 20 set a timer pause in your program. By making the
computer count to 920, you keep the computer busy for two seconds.

As you can see, this is groundwork for a stopwatch. Erase the program and
type:

194 PRINT "HOW MANY SECONDS™"

20 INPUTS

30 FORZ=1TOD 4605

4@ NEXT Z

5@ PRINT S " SECONDS ARE UPE!Y

Run it. Input the number of seconds you want timed on your stopwatch.

DO-IT-YOURSELF PROGRAM 5-1

It would help if the stopwatch could sound some kind of alarm. Add
lines to the end of the program to give it an alarm.

35



Here's the program we wrote:
1 PRINT "HOW MANY SECONDS"

20 INPUT S
30 FORZ=1TO 46D * S
40 NEXT Z

S50 PRINT S " SECONDS ARE UPII I
69 FORT =120 T0 189

This is how computerized 79 SOUND T 1
timers work. 80 NEXTT

90 FORT =150 TO 140 STEP -1
100 SOUND T 1
110 NEXTT

120 GOTO 50

Notice the GOTO line at the end of the program. It causes the message to
keep printing and the alarm to keep ringing until you press or
SHIFD@.

Counting Within the Time

Before doing more with the clock, have the computer keep count within
the time. This concept will become clear to you shortly.

Type this new program:

10 FDORX=1T0 3
20 PRINT "X ="X
@ 30 FORY=1T0O2
40 PRINT, "¥=" ¥
Notice the comma in Line 5@ NEXT Y
40. Try it without the com- 6@ NEXT X
ma. The comma makes 'Y
= ‘Y print on the next Run it. This should be on your screen:
column,
X=1
o= 1
Y = 2
X=2
Y=1
Y =2
X=3
Y=1
Y =2

36



Call it a count within a count or a loop within a loop—whatever you prefer.
Programmers call this a “nested loop.” This is what the program does:

I. It counts X from 1 to 3. Each time it counts X:
A. It prints the value of X
B. It counts Y from 1 to 2. Each time it counts Y:
1. It prints the value of Y

Whenever you put a loop inside another loop, you must close the inner
loop before closing the outer loop:

Right Wrong
~1@ FORX=1T023 “1@ FORX=1T03
290 FORY=1TOZ 20 FORY=1T0Z
30 NEXTY 30 NEXT X

49  NEXT X 4@  NEXTY

Making a Clock

With these tools, you can make the computer do much more. Type this:

~ 10 FORS=0T039
20 PRINTS
3@ SOUND 150 2

4¢ FORT =1T0 390
50 NEXTT

< B@ NEXTS
7@ PRINT "1 MINUTE IS UP"

Run the program. This is what it does:

. It counts the seconds from 0 to 59. Fach time it counts one second:
A. It prints the second.
B. It sounds a tone.
C. It pauses long enough for one second to pass.

Il.  When it finishes counting all the seconds from O to 59, it prints a
message that one minute is up.



There’s a way to make this program look better. Add this line to clear the
screen:

15 CLS
Now run the program. This time the computer goes through these steps:

. It counts the seconds from 0 to 59 (Lines 10 and 60). Each time it
counts one second:

A. It clears the screen (Line 15).

B. It prints the second (Line 20).

C. It sounds a tone (Line 30).

D. Itpauses long enough for one second to pass (Lines 40 and 50).

ll.  When it finishes counting all the seconds from 0 to 59, it prints a
message that one minute has passed (Line 70).

Using this as groundwork, it's easy to make a full-fledged clock:

1 FORH=@TO 23
20 FORM=@T0S9
3¢ FORS=@T0S9
40 CLS

3@ PRINT H":"M":"§
6@ SOUND 150, 2

70 FORT=1T0375
BO NEXTT

98 NEXTS

180 NEXTHM

1190 NEXTH

Here’s an outline of what the computer does in this program:

l. It counts the hours from 0 to 23 (Line 10). Each time it counts a new
hour:

A. ltcounts the minutes from O'to 59 (Line 20). Each time it counts a
new minute;

1. It counts the seconds from 0 to 59 (Lines 30 and 90). Each
time it counts a new second:

a. It clears the screen (Line 40).
b. It prints the hour, minute, and second (Line 50).
C. It sounds a tone (Line 60).
d. It pauses long enough for one second to pass (Lines 70
By adding this line, 120 and 80).
,?e?pﬁ;%yfhe clockwillrun 2. When itfinishes counting all the 59 seconds, it goes back to
Line 20 for the next minute (Line 100).
Having a tough time with B.  Wheniitfinishes counting all the 59 minutes, it goes back to Line
this program? Skip it for 10 for the next hour (Line 110).
now. It'll seem easy later.

ll. - When it finishes counting all the hours (0-23), the program ends.

38



DO-IT-YOURSELF PROGRAM 5-2

Between Lines 90 and 100 you can add some tones that will sound
each minute. Write a program that does this.

DO-IT-YOURSELF PROGRAM 5-3

Write a program that makes your computer show each of its nine
colors for 1 second each.

The answers to both programs are in the back.

Learned in Chapter 5
BASIC WORD PROGRAMMING CONCEPT
CLS Nested Loops

Notes

39



=)

Don’t be confused by the
arrows or the spaces be-
tween program lines. We
just put them in to illustrate
the flow of the program.

40

CHAPTER 6

DECISIONS, DECISIONS ‘e

Here’s an easy decision for the computer:

If you type “'red” . .. then make the screen red
.or
If you type “blue’ . . . then make the screen blue

Easy enough? Then have the computer do it. Type this program:

10 PRINT "DD YOU WANT THE SCREEN RED OR BLUE?"
2@ INPUT C#

3@ IFC%$ = "RED" THEN 100

49 IF C¢ = "BLUE" THEN 200
108 CLS((4)
11@ END

208 CLS(3)

/& poes ner I\
A EQUAL 5 .

Run the program a few times. Try both ““red”” and “blue’”’ as answers.

This is what the program does:

If you answer “red”’ . .. then . . .

1.

Line 30 sends the computer to Line 100.

2. Line 100 turns your screen red.

3. Line 110 ends the program. (If the computer gets to Line 110, it never
makes it to 200.)
... On the other hand . . .

If you answer “’blue” . . . then . ..

1. Line 40 sends the computer to Line 200.

2. Line 200 turns your screen blue.

3. Since Line 200 is the last line in the program, the program ends there.



What happens if you answer with something different from “‘red”’ or
blue’’? Run the program again. This time, answer “‘green.”’

This makes the screen red. Do you know why?

HINT: If the condition is not true, the computer ignores the THEN part
of the line and proceeds to the next program line.

PROGRAMMING EXERCISE
There's a way to get this program to reject any answer but “red” or

“blue.” These are the two lines to add. You figure out where they goiin
the program:

/.. PRINT “YOU MUST TYPE EITHER RED OR BLUE"
Q,H.GOTozo

insert the line numbers.

HINT: The lines must come after the computer has had a chance to test
your answer for “red” or “’blue.”

HINT: The lines must come before the computer makes your screen
“red.”

Answer: The lines need to come after Line 40 and before Line 100:

5@ PRINT "YDU MUST TYPE EITHER RED OR BLUE"
B¢ GOTOD Z2¢

DO-IT-YOURSELF PROGRAM 6-1

After the computer turns the screen red or blue, haveitgo back and ask
you to type “‘red”’ or “'blue” again.

HINT: You need to change Line 110 and add Line 210.
Here’s a diagram of how we wrote this program.

10 PRINT “DO YOU WANT THE SCREEN RED DR BLUE™®"
2 INPUTC$

39 IFC% = "RED" THEN 100

49 IF C% = "BLUE" THEN 200

‘5@  PRINT "YDU MUST TYPE EITHER RED OR BLUE"
B¢ GOTOD Z¢

“1p@  CLS(4)
11@ COTO 1@

200 CLS(3)
210 GOTD 10

Trace the path the computer takes through this program. Go from one line
to the next; follow the arrows where indicated. Notice the difference
between the arrows going from the IF/THEN and the GOTO lines.




42

RULES ON IF/THEN AND GOTO

IF/THEN is conditional. The computer “"branches’ only if the condi-
tion is true.

GOTO is unconditional. The computer always branches.

Although this chapter is short, you've learned an important programming
concept. You'll have the computer make decisions all through this book.

Learned in Chapter 6
BASIC WORDS

IF/THEN
END

Notes




CHAPTER 7
- GAMES OF CHANCE

Thanks to a BASIC word called RND, the computer can play almost any
game of chance.

And even if you don’t want to play computer games, you'll want to learn
two words this chapter introduces: RND and PRINT @. You'll also find in
this chapter some more uses of IF/THEN.

Type this program:
1¢ PRINT RND(1@)

Run it. The computer just picked a random number from 1 to 10. Run it
some more times . . .

It's as if the computer is drawing a number from 1 to 10 out of a hat. The
number it picks is unpredictable.

Type and run this next program. Press (BREAK when you satisfy yourself
that the numbers are random.

1@ PRINT RND(1@)3
20 GOTOD 190

To get random numbers from 1 to 100, change Line 10 and run the
program,

10 PRINT RND(10@) 5
How can you change the program to get random numbers from 1 to 2557
The answer is:

10 PRINT RNO(235)3

A Random Show

Just for fun, have the computer compose a song made up of random tones.
Type:

19 T =RND(2533)
20 SOUND T, 1
30 GOTO 19

To make the computer
pause while running the
program, press the
and keys at the same
time. Press any key to
continue.

—)

43



Sneak preview: Enjoying
graphics and sound? Go
ahead and try out some
programs in Section I,
“Sights and Sounds’

Run it. Great music, eh? Press (BREAK) when you've heard enough.

DO-IT-YOURSELF PROGRAM 7-1

 before it sounds each random tone.

Add some lines to make the computer show a random color (1-8) just

Remember always to type
NEW ENTER) before entering
a new program.

Remember how to list part of
aprogram? LIST 56-130
lists the program’s middle
part.

Try this when listing a long
program: At the start of the
listing, press and (@).
This causes the listing to
pause. Then press any key to
continue.

44

Here’s our program:

1@ T =RND(255)
14 C=RND(8)
16 CLS&(C)

. 20 SDUND T+ 1

-30 GOTD 1@

We have a few simple games in this chapter. Feel free to use your imagina-

tion to add interest to them—or invent your own.

Russian Roulette

In this game, a gun has 10 chambers. The computer picks, at random,

which of the 10 chambers has the fatal bullet. Type:
% 1@ PRINT "CHDOSE YOUR CHAMBER(1-12)"

20  INPUT X

30 IF X =RND(1®) THEN 10

48 SOUND 200 1

5@ PRINT "--CLICK--"

6@ GDTO 12

10@ PRINT "BANG--YDU'RE DEAD"

First, in Line 20, the player inputs X (a number from 1 to 10)

. Then, the

computer compares X with RND(10) (a random number from 1 to 10).

Then it follows the "’arrows’’:

If X is equal to RND(10), the computer goes to Line 100,

routine.”

the "dead

If X is not equal to RND(10), the computer ““clicks’’ and goes back to

Line 10, where you get another chance . . .

Make the dead routine in Line 100 better. Type:

»10@ FDR T =133 TD 1 STEP -5
119 PRINT BANG! 11w
¢ 120 SOUND T 1
~130 NEXTT
140 CLS
150 PRINT @ 230, "SORRY » YOU'RE DEAD"
16@ SOUND 1+ 50
17@ PRINT R 392+ "NEXT VICTIM, PLEASE"

Run the program. Here’s what the routine does:

Lines 100-130 make the computer sound descending tones and print



Line 140 clears the screen. Since no color is given, the computer makes the
screen green.

Lines 150 and 170 use a new word—PRINT @—to position two messages
on your screen: SORRY, YOU'RE DEAD and NEXT VICTIM, PLEASE.

The grid below shows the 511 positions on your screen. Line 150 prints
SORRY, YOU'RE DEAD at position 230 (224 + 6). Line 170 prints NEXT
VICTIM, PLEASE at position 390 (384 + 6).

/O hAse I BRINNARIRnORERERERERRONL. )

0
32
b4
9
128
160
192
28 S Y. YOU RE DEAD
256

288
320
352
384 NEXT 1C:TIIML .- FPILIELASIE
as
448
480

DO-IT-YOURSELF PROGRAM 7-2

Change this program so that if the player does manage to stay alive for
10 clicks, the computer pronounces the player the winner, printing
this message on the screen:

611

128
160
19z

223 co TULATILONS
25 ou NAGE D
288 TDI STAY ALINVE
320
52
384
115
348
180/
\. _J/

HINT: You can use the FOR/NEXT loop, so that the computer can keep.
count of the number of clicks.

Our answer is in the Appendix.

Rolling the Dice

This game has the computer roll two dice. To do this, it must come up with
two random numbers. Type:

The grid is in the Appendix,
“PRINT @ Screen Loca-
tions.”” Use it to plan your
programs’ screen formats.

45



46

18 CLS

28 X = RND(B)
3@ Y = RND(B)
46 R =X+ Y

3@ PRINTRZ00, X

B@ PRINT@Z14.,Y

70 PRINT @ 394, "YOU ROLLED A" R

B@ PRINT @ 454, "DO YOU WANT ANDTHER ROLL?"
9@ INPUT A%

100 IF A% = "YES" THEN 10

Run the program.

Line 10 clears the screen.

Line 20 picks a random number from 1 to 6 for one die. Line 30 picks a

random number for the other die.

Line 40 adds the two dice to get the total roll.

Lines 50-70 print the results of the roll.

Line 90 lets you input whether you want another roll. If you answer "yes,”
the program goes to Line 10 and runs again. Otherwise, since this is the last

line in the program, the program ends.

DO-IT-YOURSELF PROGRAM 7-3

Since you know how to roll dice, it should be easy to write a “Craps”
program. These are the rules of the game (in its simplest form):

1.

The player rolls two dice. If the first roll’s a 2 (snake eyes”), a3
("cock-eyes”), ora 12 ("boxcars”), the player loses and the game’s
over.

. If the first roll's a 7 or 11 ("a natural”), the player wins and the

game’s over.

. Ifthe first roll’s any other number, it becomes the player’s “point.”

The player must keep rolling until either "making the point” by
getting the same number again to win, or rolling a 7, and losing.

You already know more than enough to write this program. Do it.
Make the computer print it in an attractive format on your screen and
keep the player informed about what is happening. It may take you a
while to finish, but give it your best. Good luck!

Our answer’s in the back.

Learned in Chapter 7
BASIC WORDS

RND
PRINT @

Notes




CHAPTER 8
' READING

Your computer is a natural at teaching. It's patient, tireless, and never
makes a mistake. Depending on the programmer (you, of course), it also
can be imaginative, consoling, and enthusiastic.

. . . Are your programs getting
Using RND, have it teach you math. Type: long? If you have a cassette

recorder, read your comput-

*10 CLS er’s introduction manual to
20 X =RND(13) learn how to save your pro-
30 Y = RND(13) grams on tape. If you have
4@ PRINT "WHAT IS" X "#t Yy » 720" a Deluxe Color Computer,
45 INPUT A you can also save programs

in memory. See your intro-
duction manual to learn
how.

59 IFA=X*YTHENS9?
@ PRINT "THE ANSWER IS" X*Y

- 7@  PRINT "BETTER LUCK NEXT TIME"
B0 GOTO 1090

© 9@ PRINT "CORRECT!IEY

2190 PRINT "PRESS {ENTER > WHEN READY FOR
ANODTHER™
105 INPUT A%
119 GOTO 10

The above program drills you on the multiplication tables, from 1 to 15,
and checks your answers.

Aa Bb Cc Dd Ee ¥f Gg Hh Ti Jj Kk LI Mm Nn Oe
8

DO-IT-YOURSELF PROGRAM 8-1
Make the program drill you on addition problems from 1 to 100.

47



When you first turn on the
computer, all numeric vari-
ables equal 0. When you
type NEW (ENTER, all
numeric  variables  also
equal 0.

48

N

Here are the lines we changed:
20 X =RND(10@)

38 Y =RND(io®)
49 PRINT "WHAT IS" ¥ "+ vy
43 INPUT A

30 IFA=X+YTHEN 99
6@ PRINT "THE ANSWER IS" X + Y

Make the program more interesting. Have it keep a running total of all the
correct answers. Type:

13 T=T+1

95 C=C+1

898 PRINT "THAT IS" C "CORRECT QUT OF" T
"ANSWERS™"

T'is a "‘counter.” It counts how many questions you're asked. When you
first start the program, T equals zero. Then each time the computer gets to
Line 15, itadds 1 to T.

Cis also a counter. It counts your correct answers. Since C’s in Line 95, the
computer doesn’t increase C unless your answer’s correct.

DO-IT-YOURSELF PROGRAM 8-2
Make the program more fun. Have it do one or more of the following:
1. Call you by name.
2. Reward your correct answer with a sound and light show.

3. Print the problem and messages attractively on your screen. (Use
PRINT @ for this.)

4. Keep a running total of the percentage of correct answers.

5. End the program if you get 10 answers in a row correct.

Use your imagination. We have a program in back that does this all.

First, Build Your Computer’s
Vocabulary . . .
To build your computer’s vocabulary (so that it can build yours!), type and
run this program:

12 DATA APPLES, ORANGES s PEARS
20 FORX=17T03

3@ READF$

48  NEXT X

Whathappened . . . nothing? Nothing that you can see, that is. To see what
the computer is doing, add this line and run the program:

33 PRINT "F$ = 1" F%
Line 30 tells the computer to:
1. Look for a DATA line.
2. READ the first item in the list—APPLES.



3. Give APPLES an F$ label.

4.  "Cross out’” APPLES.

The second time the computer gets to Line 30 it is told to do the same:
1. Look for a DATA line.

2 READ the first item—this time, it's ORANGES.

3.  Give ORANGES the F$ label.

4 "Cross out” ORANGES.

When you run the program, this happens in the computer’s memory:

v)
YOUR COMPUTER ‘S MEMORY
of F$ APPLES
ORANGES

PEARS

What if you want the computer to read the same list again? It's already
“crossed out’” all the data . . . Type:

680 GOTO 19

Run the program. You get an error: 20D ERROR IN 30. OD means “out of
data.” The computer’s crossed out all the data.

Type this line and run the program:
5@ RESTORE

Now it's as if the computer never crossed out any data. It reads the same list
again and again.

You can put DATA lines wherever you want in the program. Run each of
these programs. They all work the same.

10 DATA APPLES 19 DATA APPLES DRANGES
29 DATA ORANGES 29 DATA PEARS

»390 FORX=1T03 -3¢ FORX=1T03

. 40 READFS$ . 49 READF$

. 50 PRINT "F$=:"F$ .50 PRINT "F$=:"F$

B0 NEXT X “B@  NEXT X

7@ DATA PEARS

#3090 FORX=17T03

. 49 READFS$

. 5@ PRINT "F$=:"F%
B8 NEXT X

78 DATA APPLES

80 DATA DRANGES

99 DATA PEARS

FORX=17T03
READ F$

PRINT "F$ = :" F$
NEXT X

PEARS

Remember how to make the
computer pause while run-
ning a program? Press
@) to pause and any
key to get it to continue.

DATA APPLES, DRANGES,

49




50

Now Have It Build Your Vocabulary

Here are some words and definitions to learn:
Words Definitions

i¢ DATA TACITURN: HABITUALLY UNTALKATIVE
2@ DATA LOQUACIDUS: VERY TALKATIVE

3¢ DATAVOCIFEROUS, LOUD AND VEHEMENT

48 DATA TERSE» CONCISE

5@ DATAEFFUSIWE, DEMONSTRATIVE OR GUSHY

Now get the computer to select one of these words at random. Hmmm . . .
there are ten items. Maybe this works:

B0 N =RND(1@)
270 FORX=1TON
. 80 READ A%
898 NEXT X

100 PRINT "THE RANDOM WORD IS:" A%

Run the program a few times. It doesn’t work quite right. The computer’s
just as likely to stop at a definition as at a word.,

What the computer really needs to do is pick a random word only from
items 1, 3,5, 7, or 9. Fortunately, BASIC has a word that helps with this.

Type:
63 IF INT(N/2) = N/2 THENN=N -1

Now run the program a few times again. This time, it should work.

INT tells the computer to look at only the "“whole part”’ of the number and
ignore the decimal part. For instance, the computer sees INT(3.9) as 3.

Assume N, the random number, is 10. The IF clause in Line 65 does this:

INT(10/2) = 10/2
INT(5) =5
5=5

The above is true: 5 does equal 5. Since it’s true, the computer completes
the THEN clause. N is adjusted to equal 9 (1@ - 1).

Now assume N, the random number, is 9. The IF clause in Line 65 does
this:

INT(9/2) = 9/2
INT(4,53) = 4,5
4 =4.,5



The above is not true: 4 does notequal 4.5. Since it's not true, the computer
doesn’t complete the THEN clause. N remains 9.

Besides reading a random word, the computer also must read the word's
definition. Add these lines to the end of the program:

110 READ B%
120 PRINT "THE DEFINITION IS :" B#%

Now run the program a few times.

Have the computer print one random word and definition after the next.
Add this to the start of the program:

5 CLEAR 1¢@

This reserves plenty of ’string space.” Add these lines to the end of the
program:

130 RESTORE
14¢ GODTD 6@

This lets the computer pick a new random word and its definition from a
“restored” group of data items.

Here’s how the program now looks:
3 CLEAR 120

12 DATA TACITURN: HABITUALLY UNTALKATIVE

20 DATA LDWUACIDUS: VERY TALKATIVE

3¢ OATAVDCIFEROUS: LOUD AND VEHEMENT

48 DATA TERSE: CONCISE

50 OATA EFFUSIVE: DEMDNSTRATIVE DR GUSHY
~B@® N=RND(12)

B3 IF INT(N/Z2) =N/2 THENN =N - |

70 FDR X =1TON

88 READ A%

98 NEXT X

186 PRINT "A RANDDM WDRD IS :" A%

112 READ B%

120 PRINT "ITS DEFINITIDN IS :" B¢%

130 RESTORE

149 GDTD G2

DO-IT-YOURSELF PROGRAM 8-3
Want to complete this program? Program it so that the computer:
1. Prints the definition only.
2. Asks you for the word.
3. Compares the word with the correct random word.
4

. Tellsyou if your answer is correct. If your answer is incorrect, prints
the correct word.

If you like, add some more
words and definitions by
adding DATA lines.

For variations on this pro-
gram, you might try states
and capitals, cities and
countries, foreign words and
meanings.

—)

51



Here’s our program:

5 CLEAR 500

19 DATATACITURN, HABITUALLY UNTALKATIVE
20 DATA LOQUACIOUSs VERY TALKATIVE

30 DATAVOCIFEROUS: LOUD AND VEHEMENT

49 DATA TERSE s CONCISE

50 DATA EFFUSIVE:» DEMONSTRATIVE OR GUSHY
60 N =RND(19)

65 IF INT{(N/Z) =N/ZTHENN=N-1

TR fnieiion
mat or sound. 80 READ A%
90 NEXT X

119 READB%

120 PRINT "WHAT WORD MEANS :" B$%$

130 RESTORE

1490 INPUT R%

150 IF R$ = A% THEN 190

16¢ PRINT "WRONG"

170 PRINT "THE CORRECT WORD IS : " A%
1890 GOTO o

1890 PRINT "CORRECT"

200 GOTO 6O

Learned in Chapter 8
BASIC WORDS
DATA
READ
RESTORE

INT
CLEAR

Notes




CHAPTER 9
'WRITING

Up to now, you've probably been changing programs the long and boring
way—by retyping them. If so, you'll be glad you've arrived at this chapter.
You'll learn a new, easy way to change programs—by “‘editing”” them.

Don’t Throw Away That Line . ..
Edit It!

(EDIT)

Pretend you make a mistake typing a program. Line 50 somehow ends up:
5S¢ DABA EFFFUSIVE, GIMPY MUSHY

You can change this line the hard way, by retyping it— or the easy way, by
editing it. To get into Line 50's “edit mode,”’ type:

EDIT 50 (ENTER
You see:

390 DABA EFFFUSIVE s GIMPY MUSHY
50

You're now in the edit mode. While in this mode, you can use any of the
special “edit keys'’ to display or change Line 50. They're all listed later in
this chapter (Table 9.1).

Start by pressing (L), the edit key for "’list.”” The (1) key displays the entire
line again and then puts you back at the start.

MOVE ON DOWN THE LINE (CURSOR MOVEMENT)

Press (SPACEBAR) a few times. This key moves you forward. To move
backward, press (=). Note that while in the edit mode merely back-
spaces; it doesn’t delete characters.

If you have a Deluxe Color
Computer, EDIT will not
work for you. You have a
better way of editing pro-
gram lines — the key.
The key is described in
Introducing Your Deluxe
Color Computer.

53



Once you enter the edit
mode, you don’t have to
press after subcom-
mands such as change, in-
sert, list, and so on.

54

Move to the start of Line 50 and press (5) (SPACEBAR). This moves you five
spaces forward — all at once. Do the same with (=). Press a number, such

as (3), and and move that many spaces backward.

Move to the start of Line 50 and press (8) (for "’search”’) and then (E) (the
character for which you want to search). This moves you to the first E.
Move back to the start and press (2) (8) (E). This moves you to the second
E in Line 50.

CHANGE THE LINE (CHANGE)

Make your first change to Line 50. Change DABA to DATA:
Move to the “wrong”’ character — the B in DABA.
Press (€) for ""change.”

Type the new character, in this case, T.

To be sure the change is made, press and you see:

5S¢ DATA EFFFUSIVE: GIMPY MUSHY

Now make the next change: Change GIMPY to GUSHY. This time you'll
change three characters at a time:

Move to the first wrong character — the | in GIMPY.
Press (3) (€) for ““change three characters.”
Type the three new characters — USH
Line 50 is now:
5@ DATA EFFFUSIVE: GUSBHY MUSHY

If this were all you needed to do to Line 50, you could press (ENTER) and get
out of the edit mode. As you can see, though, you have much more work to
do.

YOU’RE OUT! (DELETE)

You need to delete a character — one of the F’s in EFFFUSIVE:
Move to the offensive character — the third F in EFFFUSIVE.

Press (D) for "“delete.”



And it's done. To confirm this, press again:
50 DATA EFFUSIVE, GUSHY MUSHY

You can delete more than one character ata time. For example, if you press
(8) (M), you’ll delete four characters at a time.

SQUEEZE IT ALL IN (INSERT)
You now need to insert some characters: GUSHY should be DEMON-
STRATIVE OR GUSHY.

Move to where you want to insert characters — the space before
the G in Gushy.

Press (I) for "insert mode.’
Type your insert — DEMONSTRATIVE OR

At this point, you're still in the insert mode. For example, if you press
SPACEBAR), you'll insert a blank space; if you press (L), you'll insert an L.
Therefore, you need to:

Press GHIFT(4) to get out of the insert mode,
Now you can press to list the line:

5@ DATA EFFUSIVE,; DEMONSTRATIVE OR GUSHY
MUSHY

HACKAMORE OR HACKALESS? (HACK)
With “hack” you alter (halter?) a line by hacking the end of it and inserting
new characters. Try hacking at Line 50:

Move to the first character you want hacked off — the M in MUSHY.

Press (H) for hack. This hacks off the rest of the line and puts you in
the insert mode.

Type your insert — in this case, type CRUSTY.
Press GHIFT(H) to get out of the insert mode.
If you list the line now (by pressing (1)), you see:

5@ DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY
CRUSTY

When we say “’characters,”
we mean “'spaces’’ {00.

ifyou press (L to list the line
while using insert, you'll in-
sert the letter 'L into the
program line instead of
listing the line.

55



KILL THE ... AH ... MISTAKE (KILL)

Kill is almost the opposite of hack. It “kills’ everything up to the nth
occurrence of a character. Suppose that, just for kicks, you want to kill the
first half of Line 30 — everything up to the comma. Move to the start of Line

50 and press these keys:
o)
If you list Line 50 now, you see:
50 sDEMONSTRATIVE OR GUSHY CRUSTY

EXTENDED COLOR BASIC STRIKES AGAIN! (EXTEND)
Perhaps you want to “‘extend”’ Line 50:

Press (XD forextend. The cursor moves to the end of and you enter the
insert mode.

Type your insert: AND MUSHY
Press GHIFD(1) to get out of the insert mode.

Line 50 is now:
50 +DEMONSTRATIVE OR GUSHY CRUSTY AND MUSHY

Table 9.1/ Edit Keys
{n is a number. If you omit n, BASIC uses 1.)

© Key Action
Lists the line and moves to the start.
- n(@)characters Changes the next n characters
, to new characters.
(@D Inserts characters.
- n(D) Deletes n characters.
(B ""Hacks'’* the rest of the line and
puts you in the insert mode.
X0 Lets you extend the line
. n(8)character Searches for the nth
: occurrence of character.

9 Kills rest of line.
- n(K)character Kills (deletes) up to the nth
occurrence of character.

n(SPACEBAR Moves n spaces forward.

Moves n spaces backward.

=

56



Mass Delete
(DELETE)

Up to now, you’'ve deleted lines the simple way, like this:
5@ (ENTER

This works fine for one or two lines, but what if you want to delete 50 or 60
lines? You may find it easier to start over.

Extended Color BASIC comes to the rescue again with an easy way to
delete program lines — the DEL command. For instance, if you want to
delete Lines 30-50, type:

DEL 3@-50 (ENTER

Your Number’s Up!
(RENUM)

So now you can change everything about a program line except the line
number itself. Well, despair no more, because you can even do that with
RENUM,

To see how RENUM works, type this small program:

19 PRINT "THIS IS THE FIRST LINE"
20 PRINT "THIS IS THE SECOND LINE"
3@ PRINT "HERE'S ANOTHER LINE"

4¢ GOTO 1@

Now renumber it. Type:

RENUM 10@ (ENTER

List the program and you see the new line numbers beginning with 100.
Line 100 is what we call the newline:

100 PRINT "THIS IS THE FIRST LINE"
110 PRINT "THIS IS THE SECOND LINE"
120 PRINT "HERE'S ANOTHER LINE"

130 GOTO 100

Notice that even the GOTO line number reference is renumbered.

Renumber the program again with a newline of 200. Type:

RENUM Z00,120 (ENTER

Here, the newline is 200, but the renumbering starts with Line 120. Line
120 is what we call the start/ine:

1900 PRINT "THIS IS THE FIRST LINE"
110 PRINT "THIS IS THE SECOND LINE"
200 PRINT "HERE'S ANOTHER LINE"

219 GOTO 100

57



58

Renumber the program one more time giving it an increment of 50 be-
tween each line:

RENUM 300 ,,30 (ENTER

Here the newline is 300. Since you omitted the start/ine, BASIC renumbers
the entire program. The increment between the lines is 50:

300 PRINT "THIS IS THE FIRST LINE"
350 PRINT "THIS IS THE SECOND LINE"
409 PRINT "HERE'S ANOTHER LINE"
439 GOTO 300

Here is the “syntax’’ of the RENUM command:

RENUM newline, startline, increment

Renumbers a program.

newline is the first new renumbered line. If you omit newline,
BASIC uses 10.

startline is where the renumbering starts. If you omit
startline, BASIC renumbers the entire program.

increment is the increment between each renumbered
line. If you omit increment, BASIC uses 10.

Note: RENUM does not rearrange the order of lines.

Try some other variations of this command. Type:
RENUM 4,20

This renumbers your entire program. The newline is 10, and the increment
is 20:

1@ PRINT "THIS IS THE FIRST LINE"

3¢ PRINT "THIS IS THE SECOND LINE"

3@ PRINT "HERE'S ANOTHER LINE"®

70 GOTO 10

Type RENUM 40,30, (ENTER). Here, the newline is 40; the startline is 30;
and the increment is 10:

1@ PRINT "THIS IS THE FIRST LINE"
40 PRINT "THIS IS THE SECOND LINE"
5@ PRINT "HERE'S ANDTHER LINE"

6@ GOTOD 1@

Type RENUM 5,40 (ENTER) and you get a ?FC Error. This is because the
result would move Line 40 ahead of Line 10.

Learned in Chapter 9
BASIC WORDS

EDIT
DEL
RENUM




Notes

59



60

CHAPTER 10

ARITHMETIC

Solving long math problems fast and accurately is a task your computer
does with ease. Before typing long, difficult formulas, though, there’re
some shortcuts you’ll want to use.

An easy way to handle complicated math formulas is with “’subroutines.”
Type and run this program:

10 PRINT "EXECUTING THE MAIN PROGRAM"

2@ GOSUB 500
30 PRINT "NOWBACK IN THE MAIN PROGRAM"

49 ENO

500 PRINT "EXECUTING THE SUBROUTINE"
312 RETURN

Ax(BY + C) — D + E(GW) - F

GOSUB 500 tells the computer to go to the subroutine that starts at Line
500. RETURN tells the computer to return to the BASIC word that im-
mediately follows GOSUB.

Delete Line 40 and see what happens when you run the program.

If you did this, your screen shows:

EXECUTING THE MAIN PROGRAM
EXECUTING THE SUBROUTINE
NOW BACK IN THE MAIN PROGRAM
EXECUTING THE SUBROUTINE
?RG ERROR IN 510

RG means "RETURN without GOSUB.”” Do you see why deleting END in
Line 40 causes this error?

At first, the program runs just as it did before. It goes to the subroutine in
Line 500 and then returns to the PRINT line that immediately follows
GOSUB.

Then, since you deleted END, it goes to the next line—the subroutine in
Line 500. This time, though, it doesn’t know where to return. This is
because it's merely “dropping’’ into the subroutine; it is not being sent to
the subroutine by a GOSUB line.



This subroutine raises a number to any power:

#1@  INPUT "TYPE A NUMBER" i N
20 INPUT "TYPE THE POWER YOU WANT IT RAISED
TO"3 P
30 GOSuUB zZo00
#40  PRINT : PRINTN "TO THE POWER OF" P "IS" E
50 GOTO 10

2000 REMFORMULA FOR RAISING A NUMBER TO A
POMWER
20190 E =1

2020 FORX=1TOP
2030 E=E*N
2040 NEXT X
2030 IFP=0THENE = 1
2060 RETURN

Also introduced in this program are:

The colon (:), in Line 40. You can combine program lines using the
colon to separate them. Line 40 contains the two lines: PRINT and
PRINT N “TO THE"" P ““POWER IS E.

REM, in Line 2000. REM means nothing to the computer. Put REM
lines wherever you want in your program to help you remember
what the program does; they make no difference in the way the
program works. To see for yourself, add these lines and run the
program:

5 REM THIS IS A PECULIAR PROGRAM,

17 REM WILL THIS LINE CHANGE THE PROGRAM?

43 REM THE NEXT LINE KEEPS THE SUBPROGRAM
SEPARATED

DO-IT-YOURSELF PROGRAM 10-1

Change the above program so that the computer prints a table of
squares (a number to the power of 2) for numbers, say, from 2 to 10.

The answer’s in the back.

Give the Computer a Little Help

As math formulas get more complex, your computer needs help under-
standing them. For example, what if you want the computer to solve this
problem:

Divide the sum of 13 + 3 by 8
You may want the computer to arrive at the answer this way:
13 +3/8 =16/8 = 2

But, instead, the computer arrives at another answer. Type this command
line and see:

PRINT 13 + 3 7/ 8 (ENTER

—

See something different
about INPUT? You can have
the computer print a mes-
sage before waiting for your
input.

PRINT by itself tells the com-

puter to skip a line.

61



(=

An “operation’’ is a problem
you want the computer to
solve. Here the operations
are addition, subtraction,
multiplication, and division.

62

The computer solves problems logically, using its own rules:

RULES ON ARITHMETIC
The computer solves arithmetic problems in this order:
1. First, it solves any multiplication and division operations.
2. Last, it solves addition and subtraction operations.

3. If there’s a tie (that is, more than one multiplication/division or
addition/subtraction operation), it solves the operations from left to
right.

in the problem above, the computer follows its rules:
. First, it does the division (3/8 = .375)
. Then, it does the addition (13 + .375 = 13.375)

For the computer to solve the problem differently, you need to use paren-
theses. Type this line:

PRINT (13 + 3) / 8 (ENTER

Whenever the computer sees an operation in parentheses, it solves that
operation before solving any others.

COMPUTER MATH EXERCISE

What do you think the computer will print as the answers to each of
these problems?

PRINT 10 - (5 -1) / 2
PRINT10 -5-1/2
PRINT (1@ -5 -1) /2
PRINT (10 -53) -1/ 2
PRINT 10 - (5 -1/ 2)

Finished? Type each of the command lines to check your answers.
What if you want the computer to solve this problem?

Divide 10 minus the difference of 5 minus 1 by 2
You're actually asking the computer to do this:

(10-5-1))/2

When the computer sees a problem with more than one set of parentheses,
though, it solves the inside parentheses and then moves to the outside
parentheses. In other words, it does this:



(10 - (5 - 1) /2

1. The
fore

2. The

its way out.

5-1=4

(10 — 4)/ 2 o

6/ 9 S 10 - 4 =6

6/2=3

RULES ON PARENTHESES
computer solves operations enclosed in parentheses first, be-
solving any others.
computer solves the innermost parentheses first. It then works

Insert parentheses in the problem below so that the computer prints 28
as the answer:

COMPUTER MATH EXERCISE

PRINT 30 -9-8-7-06

Answer:

PRINT 3@ - (8§ - (8- (7 -B6)))

Saving Routines

The program below uses two subroutines. It's for those of you who save by
putting the same amount of money in the bank each month:

10
20
30
a0
50
B0
70

sloee
1210
1920
51030
1040
2000

2010
2020
2030
2040
2050
2060

INPUT "YOUR MONTHLY DEPOSIT"S D

INPUT "BANK 'S ANNUAL INTEREST RATE" I
I=1/712% .01

INPUT "NUMBER OF DEPOSITS" P

GOSUB 1eee

PRINT "YOU WILL HAVE " FY "IN® P "MONTHS"
END

REM COMPOUND MONTHLY INTEREST FORMULA
N=1+1

GOSUB zZeoQ

FUu=D* ((E-1) /1)

RETURN

REM FORMULA FOR RAISING A NUMBER TO A
POWER

E=1

FORX=1TOP

E=E=#*N

NEX

IFP=0THENE = 1

RETURN

63



64

=

L/

Notice that one subroutine “’calls’” another. This is fine with the computer
as long as:

there’s a GOSUB to send the computer to each subroutine, and
there’s a RETURN at the end of each subroutine.

Turn to the Appendix, "Subroutines.” You'll find useful math subroutines
you can add to your programs.

Learned in Chapter 10

BASIC WORDS BASIC SYMBOLS BASIC CONCEPTS
: GOSUB () Order of operations
RETURN : REM
Notes




CHAPTER 11

WORDS, WORDS,
WORDS . ..

A great skill of the computer is its gift with words. It can tirelessly twist and
combine words any way you want. With this gift, you can get it to read,
write, and even talk.

Combining Words

Type and run this program:

1@ PRINT "TYPE A SENTENCE"

20  INPUT S%

3@ PRINT "YOUR SENTENCE HAS " LEN(S%) "
CHARACTERS"

49 INPUT "WANT TO TRY ANOTHER" 3 A%

5@ IF A% = "YES" THEN 1@

Impressed? LEN(S$) computes the length of string $$—your sentence. The
computer counts each.character in the sentence, including spaces and
punctuation marks.

o ey n
() e
AT 10 ! .
oo™
Seen ¢.
[ - @

Erase the program and run this, which composes a poem (of sorts):

19 A% = "A ROSE"

E@ B$ = on

30 C%$="I5AROSE"

49 D% =DB% +C%

35@ E%$ = "AND 80 FORTH AND 80 ON*
E@ F%=A%+D%+D% + Bs +E%

70 PRINT F%

Here t?)g plus SIg? ;; ) cogwbmes strings. For example, D$ (IS AROSE") is You will not get the OS er-
a combination of B$ + C$. ror if you have not started
There are two problems you may encounter when combining strings. Add ;gu ﬁiﬁ'tﬁf'gﬁ)ﬁiﬁns'ffocnf
the following line and run the program. It shows both problems: Chapter 8 with the CLEAR
line.
B0 G$=F$+F$+FS+Fs +Fs+F%+F$ 200 fine

When the computer gets to Line 80, it prints the first problem with this line: { J
¢OS ERROR IN 80 ("out of string space’’).

65



Not impressed? Later, we’'ll
show practical uses of this
unusual skill.

66

On startup, the computer reserves only 200 characters of space for work-
ing with strings. Line 80 asks it to work with 343 characters. To reserve
room for this many characters and more {up to 500}, add this line to the
start of the program and run:

3 CLEAR 500

Now when the computer gets to Line 80, it has enough string space, but
prints the second problem with this line: ?2L.S ERROR IN 80 ("'string too

long”’).

A string can contain no more than 255 characters. When storing more than
255 characters, you need ‘o put these characters into several strings.

Twisting Words

Now that you can combine strings, try to take a string apart. Type and run
this program:

10 INPUT "TYPE A WORO" 3§ W

20 PRINT "THE FIRST LETTER IS ¢ " LEFT% (W$,1)

3¢ PRINT "THE LAST 2 LETTERS ARE : " RIGHTS
(W% 2)

490 GOTO 10

Here’s how the program works:
In Line 10 you input string W$. Assume the string is MACHINE:
-]
COMPUTER MEMORY

W$——> MACHINE

In Lines 20 and 30, the computer computes the first left letter and the last
two right letters of the string:

MACHINE
LEFTS (W$,1) RIGHTS (W$,2)

Run the program a few more times to see how it works.
Now add this line to the program:
3 CLEAR 300

so that your computer will set aside plenty of space for working with
strings. Run the program again. This time input a sentence rather than a
word.

PROGRAMMING EXERCISE

How would you change Lines 20 and 30 so that the computer will give
you the first 5 letters and the last 6 letters of your string?

20
30

Answers:

20 PRINT "THE FIRST FIVE LETTERS ARE :" LEFT%
(W% ,3)



30 PRINT "THE LAST SIX LETTERS ARE :" RIGHTS
(W% ,6)

Erase your program and type this one:

19 CLEAR 500

2@ INPUT "TYPE A SENTENCE" 3§ S¢%

30 PRINT "TYPE A NUMBER FROM 1 TO * LEN(S%)

490  INPUT X

50 PRINT "THE MIDSTRING WILL BEGIN WITH
CHARACTER " X

6@ PRINT "TYPE A NUMBER FROM 1 TO " LEN(S%) - X
+ 1

70  INPUT Y

80 PRINT "THE MIDSTRING WILL BE" ¥
"CHARACTERS LONG"

90 PRINT "THIS MIDSTRING IS :” MID&(S% X ¥)

ioe GOTO Zeo

Run this program a few times to see if you can deduce how MID$ works.
Here’s how the program works:
In Line 20, assume you input HERE IS A STRING:

YOUR COMPUTER ‘S MEMORY
5% — HERE IS A STRING

In Line 30, the computer first computes the length of S$, which is 16
characters. It then asks you to choose a number from 1 to 16. Assume you
choose 6.

In Line 60, the computer asks you to choose another number from 1 to 12
(16-6+1). Assume you choose 4.

o
YOUR COMPUTER ‘S MEMORY &NO

In Line 90, the computer gives you a "“mid-string” of S$ that starts at the 6th
character and is four characters long:

123435678810 11 12 13 14 15 16
HERE I8 A s T R I N G

-l

MID$(5%:+6:4)
For another example of MID, erase the program and run this:

19  INPUT "TYPE A SENTENCE" § 5%

20  INPUT "TYPE A WORD IN THE SENTENCE" i W%
30 L = LEN(KS$)

480 FOR X =1 TO LEN(S%)

5@ IFMID$(S%X+L) = W$ THEN 90

6@ NEXT X

7@ PRINT "YOUR WORD ISN'T IN THE SENTENCE"
80 END

8@ PRINT W$ "--BEGINS AT CHARACTER ND, " X

Remember how to erase a
program? Type:
NEW (ENTER)

You can use this kind of
program to sort through in-
formation. For instance, by
separating strings, you could
look through a mailing list
for TEXAS addresses.

67



68

Here’s how the program works:

In Line 20, assume you input the word IS for W$. In Line 30, the computer
counts W$’'s length: 2 characters.

YOUR COMPUTER 'S MEMORY

5% — HERE IS A STRING
W — 15

In Lines 40-90 (the FOR/NEXT loop), the computer counts each character
in S$, starting with character 1 and ending with character LEN(S$), which
is 16.

Each time the computer counts a new character, it looks at a new mid-
string. Each mid-string starts at character X and is L (2) characters long.

For example, when X equals 1, the computer looks at this mid-string:

1
HERE I8 A STRING

MID$(S%,14+2)

The fourth time through the loop, when X equals 4, the computer looks at
this mid-string:

4
HE RE I8 [A) S TR INGEG
2

MID$ (5% ,432)

When X equals 6, the computer finally finds IS, the mid-string for which itis
searching.

DO-IT-YOURSELF PROGRAM 11-1
Start with a one-line program:
10 A$ = “CHANGE A SENTENCE.”
Add a line that inserts this to the start of A$:
IT'S EASY TO
Add another line that prints the new sentence:
IT’S EASY TO CHANGE A SENTENCE




This is our program:

10 A% = "CHANGE A SENTENCE "
20 Bs="IT’'S EASY TO"
30 Cs=Bs+" " + A%

4¢ PRINTC%

DO-IT-YOURSELF PROGRAM 11-2
Add to the above program to make it:

Find the start of this mid-string:
A SENTENCE

Delete the above mid-string to form this new string:
IT'S EASY TO CHANGE

Add these words to the end of the new string:
ANYTHING YOU WANT

Print the newly formed string:
IT’S EASY TO CHANGE ANYTHING YOU WANT

HINT: To form the string IT’S EASY TO CHANGE, you need to get the
left portion of the string IT'S EASY TO CHANGE A SENTENCE.

Answer:
16 A% = "CHANGE A SENTENCE "
20 B$="IT'SEASY TO"
30 C$=B%+""+AS
4@ PRINTC$ This program is the basis of a
5S¢ Y = LEN ("A SENTENCE") “word processing’’ pro-
B0 FORX=1TOLEN(CS) gram—a popular program
70 IF MID$ (C$,X,¥) = "A SENTENCE" THEN 90 oxpenses T YPIng
80 NEXT X
85 END

90 D% =LEFT$ (CsX - 1)
100 E$ =D% + "ANYTHING YOU WANT"
116 PRINT E$

DO-IT-YOURSELF CHALLENGER PROGRAM
Write a program that:
- Asks you to input a sentence.

Asks you to input (1) a phrase within the sentence to delete and (2) a
phrase to replace it.

Prints the changed sentence.

This may take a while, but you have everything you need to write it.
Our answer’s in the back.

69



70

Learned in Chapter 11

BASIC WORDS

LEN
LEFTS
RIGHT$
MID$

BASIC String OPERATOR
+

Notes




CHAPTER 12

A POP QUIZ

By using a word named INKEY$, you can get the computer to constantly
watch,”” "time,” or "'test’” what you're typing. Type and run this program:

12 A% = INKEY#

20 IF A% «<:"" GOTO 50

390 PRINT "YOU PRESSED NOTHING"

40 GOTO 1@

S@ PRINT "THE KEY ¥YOU PRESSED IS~--" A%

INKEY$ checks to see if you're pressing a key. It does this in a split second.
At least the first 20 times it checks, you've pressed nothing (" ).

Line 10 labels the key you press as A$. Then the computer makes a
decision:

If A$ equals nothing ("’ "), it prints YOU PRESSED NOTHING and
goes back to Line 10 to check the keyboard again.

If A$ equals something (anything but ”* '), the computer goes to Line
50 and prints the key.

Add this line and run the program:
60 GOTO 1@

No matter how fast you are, the computer is faster! Erase Line 30 to see
what keys you're pressing.

Beat the Computer

Type this program:

18 ¥ =RND(4)

20 Y = RND(4)

3% PRINT "WHAT IS" X "+" Y
490 T =0

50 A% = INKEYS$

B8 T=T+1

70 SOUND 1281

8@ IF T =15 THEN 200
99 IF A% = "" THEN 50
100 GOTO 1@

200 CLS(7)
210 SOUND 180, 30
22¢ PRINT "TOO LATE"

Here’s how the program works:

Lines 10, 20, and 30 have the computer print two random numbers and ask
you for their sum.

Line 40 sets T to 0. T is a timer.

—

Remember that < > means
“not equal to.” '

is an "'empty string”’
(nothing).




Remember the problem of
mixing strings with num-
bers? Chapter 2 will refresh
your memory.

L)

72

Line 50 gives you your first chance to answer the question—in a split
second.

Line 60 adds 1to T, the timer. T now equals 1. The next time the computer
gets to line 60 it again adds 1 to the timer to make T equal 2. Each time the
computer runs Line 60 it adds 1 to T.

Line 70’s there just to make you nervous.

Line 80 tells the computer you have 15 chances to answer. Once T equals
15, time’s up. The computer insults you with Lines 200, 210, and 220.

Line 90 says if you haven’t answered yet the computer should go back and
give you another chance.

The computer gets to Line 100 only if you do answer. Line 100 sends it
back for another problem.

How can you get the computer to give you three times as much time to
answer each question?

Answer:

By changing this line:
B@ IF T =45 THEN 200

Checking Your Answers

How can you get the computer to check to see if your answer is correct?
Would this work?

102 IF A%$ = X + Y THEN 130

11¢  PRINT "WRONG" » X "+" Y "s" ¥ + ¥
12¢ GOTO 1@

13@ PRINT "CORRECT"

148 GOTO 1@

If you run this program (and answer on time), you'll get this error message:
PTM ERROR IN 120

That's because you can’t make a string (A$) equal to a number (X +Y). You
somehow must change A$ to a number.



Change Line 100 by typing:
19@ IF YAL(A%) = X + ¥ THEN 13@

VAL(A$) converts A$ into its numeric value. If A$ equals the string ”’5,"" for
example, VAL(A$) equals the number 5. If VAL(A$) equals the string "‘C,”’
VAL(A$) equals the number 0. ("C"’ has no numeric value.)

To make the program more challenging, change these lines:

1@ X =RND(48) + 4
20 Y = RND(49) + 4
99 B% =bB% + A%

ied IF UAL(B$) = X + ¥ THEN 130
Then add these lines:

45 B$ = "
95 IF LEN(B$) <> 2 THEN 50

A Computer Typing Test

Here’s a program that times how fast you type:

i@ CLS

2 INPUT "PRESS <ENTER>» WHEN READY TO TYPE
THIS PHRASE": E%

3@ PRINT "NOW IS THE TIME FOR ALL GOOD MEN"

49 T =1
3@ A% = INKEY®
B0 IF A% ="" THEN 100

7®% PRINT A%

B@ B% - B% + A%

99 IF LEN(B%$) = 32 THEN 1290
198 T=T+1

11e GOTO 5@

120 85=T/74
130 M=5/6¢@
14@ R =8/M
15@ PRINT

160 PRINT "YOU TYPED AT--"R"--WDS/MIN"

73



We could have made this
calculation in one line by us-
ing parentheses:
120 R=8/((T/74)/
60)

i

How about a variation of this
program—a speed-reading
test?

74

Line 40 sets T, the timer, to 1.

Line 50 gives you your first chance to type a key (A$). If you're not fast
enough, Line 60 sends the program to Line 100 and adds 1 to the timer.

Line 70 prints the key you typed.

Line 80 forms a string named B$. Each time you type a key (A$), the
program adds this to B$. For example, if the first key you type is ’N,”” then:

A$ - IINII
and
Bs = B + A%
B$ - i + IINII
B$ - IINII
If the next key you type is O,” then:
A$ - IIDII
and
B¢ = Bs + A%
B$= IINII+ IIDII
B$ = "NO"
If the third key you type is “W,” then:
A$ - IIHII
and
B$ - IINDII + IIHII
Bé = "NOW"

When the length of B$ is 32 (the length of NOW IS THE TIME FOR ALL
GOOD MEN), the program assumes you've finished typing the phrase and
goes to Line 120 to compute your words per minute.

Lines 120, 130, and 140 compute your typing speed. They divide T by 74
(to get the seconds), S by 60 (to get the minutes). They then divide the eight
words by M to get the words per minute.

Learned in Chapter 12
BASIC WORDS

INKEY$
VAL

Notes




CHAPTER 13

MORE BASICS

Before you're finished with the "basics,” you need to know a few more
words.

The first is STOP. Type and run this program:

10 A=1
20 A=A+ 1
30 §T0°P
40 A=A * 2
5S® STOP

6o GOTOD 290

The computer starts running the program. When it getsto Line 30, it prints:

BREAK IN 30
OK

You now can type a command line to see what’s happening. For example,
type:
PRINT A (ENTER

The computer prints 2—A’s value when the program’s at Line 30. Now
type:
CONT (ENTER

The computer continues the program. When it gets to Line 50, it prints:

BREAK IN 50

Type:
PRINT A (ENTER
This time the computer prints 4—A's value at Line 50.

Type CONT again, and the computer breaks again at Line 30. If you have it
again print A, it prints 5—the value of A at Line 30 the second time through

the program.

Inserting STOP lines in your program helps you figure out why it’s not
working the way you expect. When you fix the program, take the STOP
lines out.

75



To save memory, you can
omit spaces in your program
before and after punctuation
marks, operators, and BASIC

76

words.

For Long Programs . ..

Clear memory and type:

PRINT MEM (ENTER

The computer prints how much storage space remains in the computer’s
memory.

When you're typing a long program, you will want to have the computer
PRINT MEM from time to time to make sure you're not running out of
memory.

Help with Typing

Type this program:

1¢ INPUT "TYPE 1,2, 0R 3" N
2@  ON N GOSUB 100 200, 300
30 GOTD 1@

1¢¢ PRINT "YOU TYPED 1"
119 RETURN

Z@@ PRINT "YOU TYPED 2"
210 RETURN

300 PRINT "YOU TYPED 3
310 RETURN

ON ... GOSUB in Line 20 works the same as three lines:

18 IFN=1THENGOSUB 100
20 IF N =2 THEN GOSUB 200
22 IF N =3 THEN GOSUB 300

ON ... GOSUB looks at the line number following ON—in this case N.

If Nis 1, the computer goes to the subroutine starting at the first line
number following GOSUB.

If N is 2, the computer goes to the subroutine starting at the second
line number.

If N is 3, the computer goes to the subroutine starting at the third line
number.

What if N is 42 Since there’s no fourth line number, the computer simply
goes to the next line in the program.

Here is a program that uses ON . . . GOSUB:

3 FORP=1TOGOd: NEXTP

16 CLS: X =RND(10@): ¥ = RND(120)
20  PRINT (1) ADDITION"

30 PRINT "(Z) SUBTRACTION"

4@  PRINT "(3) MULTIPLICATION"

53¢ PRINT "(4) DIVISION"

6@ INPUT "WHICHEXERCISE(1-4)"i R
7¢ CLS



@ ONRGOSUB 1000, 2000, 3000, 4000
99 GOTO S

11000 PRINT "WHAT IS" X "+ ¥

121¢ INPUTA

1920 IF A=X+Y THEN PRINT "CORRECT" ELGE
PRINT "WRONG"

1030 RETURN

2000 PRINT "WHAT IS" X "-" Y

2010 INPUT A

2020 IF A = X-Y THEN PRINT "CORRECT" ELSE
PRINT "WRONG"

2030 RETURN

13000 PRINT "WHAT IS" X "#" Y

3010 INPUT A

3020 IF A = X*Y THEN PRINT "CORRECT" ELSE
PRINT "WRONG"

RETURN

PRINT "WHAT IS" X “/" Y

INPUT A

IF A = X/Y THEN PRINT "CORRECT" ELSE
PRINT "WRONG"

4030 RETURN

Notice the word ELSE in Lines 1020, 2020, 3020, and 4020. You can use
ELSE if you want the computer to do something special when the condition
is not true. In Line 1020, if your answer—A—equals X + Y, then the
computer prints CORRECT or else it prints WRONG.

Youmay use ON . .. GOTO inasimilarway asON . . . GOSUB. The only
difference is that ON GOTO sends the computer to another line number
rather than to a subroutine.

Here’s part of a program using ON ... GOTO:

19 CLS

20 PRINT @134, "(1) CRAZY EIGHTE"

3@ PRINT@ 1686, "(2) 500"

49 PRINT @ 198, "(3) HEARTS"

5¢ PRINT @354, "WHICH DO YOU WANT TO PLAY"
B@ INPUTA

83 CLS

70 ONAGOTO 1000, 2000, 3000

PRINT @ 23@» "CRAZY EIGHTS GAME"
END

: PRINT @ 236+ "500 GAME"
2010 END

3000 PRINT @ 235, "HEARTS GAME"
3010 END

When A does not equal X +
Y, the condition set up in
Line 1020 is not true.

— )

77




78

Does the Job Say “AND” or ““OR”"?

Anyone who speaks English knows the difference between ““and’’ and
“or’—even your computer. For example, assume there’s a programming
job opening. The job requires:

A degree in programming
AND
Experience in programming

UL RAY
W‘M\\\ \\\\\\\\\g\\

Erase memory and type:

18 PRINT "DO YOU HAVE--"

20 INPUT "A DEGREE IN PROGRAMMING"; D%

3@ INPUT "EXPERIENCE IN PROGRAMMING" 3 E%

40 IF D$ = "YES" AND E$ = "YES" THEN PRINT "YQU

HAVE THE JOB" ELSE PRINT "SORRY s WE CAN'T
HIRE YOU"

50 GOTO 1@

Run the program. You may answer the questions this way:

DO YOU HAVE -~ -~

A DEGREE IN PRDGRAMMING? NO
EAPERIENCE IN PROGRAMMING? YES
SORRY » WE CAN'T HIRE YOU

Now, assume the requirements change so that “‘or’” becomes ““and.” The
job now requires:

A degree in programming
OR
Experience in programming

To make this change in the program, type:

490 IF D% = "YES" OR E$ = "YES" THEN PRINT

"YOU'VE GOT THE JOB" ELSE PRINT "SORRY » WE
CAN’'T HIRE YOU™

Run the program and see what a difference AND and OR makes:

DO YOU HAVE - -

A DEGREE IN PROGRAMMING? NO
EXPERIENCE IN PROGRAMMING? YES
YOU HAYVE THE J0OB



More Arithmetic
These words can save many program lines:

SGN
SGN tells you whether a number is positive, negative, or zero:

i@ INPUT "TYPE A NUMBER" 3 X

20 IF 8GN(X 1 THEN PRINT *POSITIVE"
30 IF SGN(X @ THEN PRINT “"ZERO"

4@  IF SGN(X -1 THEN PRINT "NEGATIVE"
50 GOTO 10

Run the program, inputting these numbers:
15 -390 -,012 0 22

ABS

ABS tells you the absolute value of a number (the magnitude of the number
without respect to its sign). Type:

i@ INPUT "TYPE A NUMBER" 3 N
20 PRINT "ABSOLUTE VALUE IS" ABS(N)
3¢ GOTO 10

Run the program inputting the same numbers as the ones above.
STR$

STR$ converts a number to a string. Example:

i@ INPUT "TYPE A NUMBER" 3 N
20 A% = STR$(N)
30 PRINT A% + " IS NOW A STRING®

Exponents

Type and run this program to see how the computer deals with very large
numbers:

10 X =1

20  PRINT Xj
30 H=X=*10
49 GOTO Z@

The computer prints very large or very small numbers in “"exponential
notation.” "“One billion”’ (1,000,000,000), for example, becomes 1E+09,
which means “the number 1 followed by nine zeros.”

If an answer comes out ’5E-06,” you must shift the decimal point, which
comes after the 5, six places to the left, inserting zeroes as necessary.
Technically, this means 5¥10-6, or 5 millionths (.000005).

Exponential notation is simple once you get used to it. You'll find it an easy
way to keep track of very large or very small numbers without losing the
decimal point.

Notice the OV (overflow)
error at the end. The com-
puter can’t handle numbers
larger than 1E+ 38 or smal-
ler than -1E+38. (It rounds
off numbers around 1E-38
and -1E-38 to 0.)

=

Ortechnically 1x109, which
is 1 times 10 to the ninth
power: 1x10+710%10x
10x10*10%10%10%10

.

In our BASIC, that’s 5/10/10/
10/10/10/10

79




80

Congratulations, Programmer!

You've now learned the ""basics’”’ and can no doubt write some decent
programs. The next section will help you add excitement to your programs
with graphics and music.

| Learned in Chapter 13 :
- BASIC WORDS BASIC SYMBOLS BASIC CONCEPT

STOP SGN AND Exponential
- CONT ABS OR notation
MEM STR$
Notes










SECTION II

SIGHTS AND SOUNDS

Have you reached your fill of BASIC basics? In this section, you'll take a dra-
matic leap and learn to:

Draw a circle

Paint a house
Compose a song
Cool off with a cube

And much more!

And you'll also be amazed at how quickly and easily you can do this! So
turn the page and we’'ll get right to the point.






CHAPTER 14

LET’S GET TO THE POINT

One of the most exciting features of Extended Color BASIC is its ability to
display precise, varied, and easy-to-use graphics called "“high-resolution
graphics.”

Just how easy-to-use are these graphics? Well, let’s start with the most basic
(pun intended) graphic element—a dot (or point)—and build from there.

Extended Color BASIC makes it simple to put a dot on the screen. Type the
following program and see:

3 PMODE 1.1

19 PCLS

20 SCREEN 1,1

30 PSET (10:20.:8)
49 GOTO 40

Now run the program. The screen should be buff, and if you look carefully,
you can see a small orange dot in the upper left corner. That dot was put
there by the PSET (point set) in Line 30.

PSET lets you set a dot anywhere on the screen. It has this format:

PSET (h,v,c) sets a point on the current graphics screen

h is the horizontal position (0 to 255).

v is the vertical position (0 to 191).

c is the color (0 to 8). If you omit ¢, BASIC uses the current
foreground color.

Even though you can’t see it, the computer has divided your screen into a
grid of nearly 50,000 dots—256 across and 192 down—so that you can
put a dot precisely where you want it. Simply look up the dot’s position in
the Graphics Screen Worksheet in the back of this manual.

Look at Line 30 again and see how PSET specifies the dot’s position (10
over and 20 down):

30 PSET (1@2,20.:8)

A 10,600-mile  journey
starts with a single step,
and even the Mona Lisa
began with a single stroke
on the canvas. (A Jackson
Pollock might begin with a
single splatter!)

Don’t worry about any of

the new words. PMODE

and SCREEN, for instance,

determine the degree of de- |
tail and the range of color.

They are covered in later

chapters.

~ |/

/é\\ -

—

You'll see these ''syntax
blocks”  throughout this
section. They’ll help you un-
derstand the “'parameters”
you can use with graphic
statements.

85



Very Important Note! The
Color Computer can pro-
duce 9 colors: black, green,
yellow, blue, red, buff,
cyan, magenta, and orange.
The actual shade you get,

gram in your introduction
manual before running these
programs.

though, depends on your
TV—not the computer. We
suggest you perform the
color adjustment test pro-

The 8 gives the color (or-
ange). later, we’ll discuss
how to change the color.
For now, simply use orange.

86

Here’s the statement you would use to set an orange dot in the center of the
screen:

PSET (128,96,8)

Now add a program line that sets an orange dot in the lower right corner
(255 over and 191 down).

Is this the line you used?
3% PSET (2535,1891.,8)

If so, congratulations! You’ve made your point. Run your program and
you'll see.

Now list the program. It should look like this:

3 PMODE 1,1

12 PCLS

20 SCREEN 1,1

3@ PSET (1@,20,8)
33 PSET 255,191,8)
42 GOTO 4@

You're off to a great start . . .

. . . But What About the Color?

By now, you've probably figured out that you can change colors by
changing c to a different number in the range 0 to 8.

Within limits, this is true. However—and it’s a big however—you may not
get the color you specified. There’s a good reason for this, which we'll
cover later in the discussion of the different graphic “modes.”” For now,
don’t worry if you don’t always get the color you want.

=
Here is the list of color codes:

Code Color
0 Black
1 Green
2 Yellow
3 Blue
4 Red
5 Buff
6 Cyan
7 Magenta
8 Orange

If you want to try changing the dots’ colors, use buff (5), cyan (6), or
magenta (7). Then change the color back to orange (8) before proceed-



ing. (These 4 colors are the only ones available with your current

program.)

Now You See It ... Now You Don’t

Any guesses how to turn off a dot? Here’s a hint: It's easy and it has to
do with color.

You see, you don't really turn off the dot, you simply change its color so
that it blends into the background. You do this with a new statement:
PRESET (point reset). PRESET knows"" you want to use the background
color, so you don't need to give the color.

PRESET (h,v) resets a pbint on the curreknt graphics screen

h is the horizontal position (0 to 255).
v is the vertical position (0 to 191).

DO-IT-YOURSELF PROG RAM 14-1

Get to know the dot positions on your TV screen by using your
Graphics Screen Worksheet.

Select several points on the worksheet, identify them in terms of their
(X,Y) coordinates, and display them on the screen using the program
we used to get you started. Don’t change any program lines except
those that contain PSET(h,v,0).

k DO-IT-YOURSELF PROGRAM 14-2

Do you remember the RND (random) function from Section 12 If
not, review it; then write a short program that fills the screen with
random dots of random colors.

The Last Point

Before you finish this chapter, we want to make one more point. You
can use PPOINT to find out what color any dot on the screen is.

PPOINT (h,v) tells what color a point is on the current graphics screen

h is the point’s horizontal position (0 to 255).
v is the point’s vertical position (0 to 191).

This example shows how PPOINT can be handy to include in a program:

3
10
15
3¢
33
40
30
6o
70
185
110

PMODE 3,1

PCLS

SCREEN 141
RND(1@)
Y RND(1@)
C RND(8)

PSET (X,Y,C)

IF PPOINT (5,5)=8 THEN GOTO 125
GOTO 30

CLS

PRINT @ 100, "POSITION (5,5)
I8 NOW ORANGE"

v
A

87



88

The computer fills a 10X10 ““square’’ (in the upper left corner of the screen)
with random colored dots. When the dot in Position (5,5) is filled with an
orange dot (Code 8), the computer displays the message POSITION (5,5) IS
NOW ORANGE.

Learned in Chapter 14

BASIC WORDS CONCEPTS
PSET Setting points
PRESET Resetting points
Changing colors
PPOINT Finding a point’s color
Notes




CHAPTER 15

HOLD THAT LINE!

So you can put a dot on the screen—even several dots. But what kind of
starting point is that, you may wonder, when you’re eager to create some
"real” graphics.

To answer that question, think of some of your very first “drawings”” on
paper. Perhaps they were detailed pictures of clowns and trained seals and
other wonderful things. How did you draw such marvels? Probably by
connecting a bunch of dots.

And that is exactly how your computer “draws.” You tell it which dots to
connect, and it draws a line.

That’s Some Line You Have

One way to tell the computer to draw a line between dots is to use the
Extended Color BASIC statement LINE. To see LINE at work, modify the
program that set the dots. (For the sake of convenience, call the program
”Lines.”)

First change Line 30 as follows:
3@ LINE (@:0) - (255+191),PSET

Then delete Line 35 by typing:
35 (ENTER

Your program should now read:

5 PMODE 11

1@ PCLS

20 SCREEN 1.1

30 LINE (@:2)-(255,191),PSET
4@ GOTO 4@

Now run the program. The screen should display an orange line that runs
from the upper left to the lower right on a buff background.

How about changing the direction of the line so that it runs from the lower
feft to the upper right?

89



Using the Graphics Screen
Worksheet, plot the points
used in creating the in-
tersecting lines in the
“Lines”” program.

90

You've probably already figured this one out, but—just in case—here’s the
new Line 30:

30 LINE (@,191)-(255,0) PEET

X Marks the Spot

What about intersecting lines?

Reinsert the original Line 30 that drew the first line. (First, renumber it
as Line 25)) Then run the program. Does your screen display 2 orange
lines intersecting in the center?

In fact, you can put as many lines on the screen as you want—once
you learn the format. Here it is:

LINE (h1,v1)-(h2,v2),ab draws a line or a box on the current
graphics screen

(h1,v1) is the line’s start point.

(h2,v2) is the line’s end point.

a is either PSET (set) or PRESET (reset).

b is either B (box) or BF (box filled). This is optional.

Note: You may omit the start point as discussed below.

Just as in the old dot-to-dot days, you may often want to draw a line that
begins at the last line’s end point. Whenever this is the case, you may omit
the start point. The computer automatically starts at either the end point set
by the latest LINE statement or—if you haven't yet used LINE in the
program—at (128,96). Here is an example:

30 LINE (@,0)-(255,191),PSBET
33 LINE ~(181:0)PSET

Line 20 draws a line from (0,0) to (255,191). Line 30 then draws another
line, this one from (255,191) to point (191,0).

Regardless of whether or not you include the start point, you must precede
the end point with a hyphen (-).

How About Dropping a Line?

We've discussed the line’s start and end points. Now let’s turn to the next
parameter in the LINE statement—PSET or PRESET.



Take another look at the program lines that created the intersecting lines:

32 LINE (@:0)-(255,191),PSET
33 LINE (2,191)-(255,0) sPSET

From your experience with turning on and off dots in Chapter 14, do you
have any idea what the PSET parameter is doing and what would happen if - , ———
you change it to PRESET? Try it and see. Change the PSET in Line 25 to LSZWE‘;‘Z i;”fﬁé’;‘igg:’an'f

PRESET and run the program again: not in the LINE command, so
30 LINE (@,0)-(255,191) ,PRESET ;gi’n’oi;’fyjsf’jgfcg’n;;’;tg;

LINE.

If you guessed that the orange line that ran from the upper left to the lower
right would “disappear,” you were right.

Now replace PSET in Line 30 with PRESET. The screen went blank, right?
The reason is the way PSET and PRESET work in a LINE statement:

PSET sets the line in the pre-specified foreground color.

PRESET sets the line back to the pre-specified background
color so that you can’t see it.

Note: The PSET and PRESET parameters in a LINE statement are
not the same as the PSET and PRESET statements discussed in
Chapter 14. They do not specify a dot or a color code. They
merely specify that the line be set to the foreground or the back-
ground color.

Before proceeding, change the PRESET parameters in Lines 25 and 30
back to PSET.

To B (aBox) or Notto B ...

We've almost made it through LINE, but a few items still need to be (to B?)
covered.

B stands for "’box.”

With Extended Color BASIC, you can make a box without having to write a
separate program line for each side. All you have to do is specify two
opposing corners of the box and add ,B to the statement. Then, when you
run the program, your computer creates a box instead of a line.

To illustrate this, call your ""Lines” program back into service.

S PMODE 1,1

19 PCLS

20 SCREEN 1,1

23 LINE (2,0)-(255,191) ,PSET
32 LINE (2,191)-(255,0),PSET
49 GOTO 4o

As is, the program creates 2 orange lines that intersect in the center of the
screen. Delete Line 30 and add the suffix ,B to Line 25. Now see what
happens when you run the program.

23 LINE (9,0)-(255,191):PSET B

Did you box yourself in?

91



92

DO-IT-YOURSELF PROGRAM 15-1

Write a program that creates a box with a pair of lines intersecting in
the center. We'll tell you why these are the only available colors when
we discuss PMODE and SCREEN in the next 2 chapters.

Fill It Up

We're almost at the end of the LINE, so let's try to finish.

If you refer to the format of LINE, you can see you have the option of adding
F to the optional suffix ,B.

F lets you "fill"” the box with the foreground color. Try it. Change Line 25 as
follows:

23 LINE (@.0)-(255+181) +PSETBF

How about that! You should have a big orange box (256 x 192) on a buff
background.

That’s Color with a Capital C,
Capital O, Capital . ..

In Chapter 14, we explained how to use the ¢ parameter of the PSET
command to change the color of a dot. But we've also been talking for
some time about foreground and background colors. Now it’s time to
explain them further.

Naturally, if you're using one color heavily, you don’t want to have to
specify it each time you put something on the screen. With the COLOR
feature, you don’t have to.

Within certain limits, the graphics feature COLOR lets you set the
foreground/background colors. (See "PMODE’ and “SCREEN"' later in
this book.) Here is its format:

COLOR foreground,background sets the foreground and background
color on the current graphics screen

foreground is the code (0 to 8) for the foreground color.
background is the code (0 to 8) for the background color.

Note: As stated in Chapter 14, the only colors available with your
current program are buff (5), cyan (6), magenta (7), and orange
(8).

When you don’t specify the foreground and background colors, your
computer automatically chooses the highest-numbered available color
code for the foreground color and the lowest-numbered available color
code for the background color. That’s why the crossing lines in the ""Lines”
program are orange (8) on a buff background (5).

To see COLOR in action, call on ""Lines’” again:

3 MODE 141

19 PCLS

20 SCREEN 1.1

25 LINE (2.:9)-(255,181)PBET



3@ LINE (2,191)-(255,0)PSET
49 GOTO 49

Insert Line 6 into your program:
B COLOR 547

Now run the program. What do you think of buff lines crossing on a
magenta background?

Do you want to see what the colors look like when reversed? If so, retype or
edit the line like this:

6B COLOR 7:+3

In the next chapter, you'll learn how to make even more colors available.

DO-IT-YOURSELF PROGRAM 15-2

Ready to try your own “’Lines’’ program? Can you build a house? Start
with Lines 5, 10, and 20 of the “Lines” program and take it from there.
Be sure to add:

A front door, of course.

At least one window. (Don’t forget to turn the lights on or off.)

A chimney. (You won’t need a chimneysweep, not yet anyway!)

The overall design is up to you (Cape Cod, Ranch, or whatever), but
we’ve included a sample house (good view, no pets) program in the
back of the book. Don’t worry about doorknobs; we’ll add those later.

Be sure to save this program on cassette, since you’ll be needing it
later. (You’ll find it much easier to draw the house if you plot its points
on a Graphics Screen Worksheet.)

DO-IT-YOURSELF PROGRAM 15-3

This should be a real challenge for you.

As you know, a straight line is the shortest distance between two
points. Well, put a few extra miles between our two points. Use LINE
to draw a crooked line,

To get started, use Lines 5, 10, and 20 from the "Lines” program.

Learned in Chapter 15

BASIC WORDS CONCEPTS

LINE Drawing a line
Erasing a line
Drawing a box
Filling in a box

COLOR Changing foreground and
background colors

If you used your Color Com-
puter to draw an airplane
and used COLOR to give it
the right color, would you
have flying colors?

COLOR is not an action
statement; it must precede
an action statement (such as
PCLS or LINE) before the
foreground and background
colors are actually changed.

93




94

Notes




CHAPTER 16

~ THESILVER SCREEN

Are you ready to find out about another statement? If so, turn down the
lights and butter the popcorn, because we're about to raise the curtain on
the silver screen.

ATz |

-

A Word About Video Memory

Whenever you want to display an image on your TV, the computer
stores the screen image in “'video memory!” The computer’s TV-circuitry
then ""reads” the screen image and displays it on your TV.

The "normal” video memory is large enough for text (letters and num-
bers) but not for graphics (circles, lines, boxes, and so on). Conse-
quently, the computer has two video memories: one for text and one for
graphics.

Lighting the Silver Screen

Take a look at our ""Lines”” program for a second. Concentrate on the
SCREEN statement in Line 20:

% PMOOE 1,1

12 PCLS

20 SCREEN 1,1

23 LINE (@,0)-(255,191),PSET
3¢ LINE (#,191)-(255,0) PSET
40 GOTO 4o

SCREEN tells the computer to display a screen image on your TV. What
kind of screen it displays depends on the instructions you give it:

First, you tell the computer whether to use the TV screen for text (such
as letters or numbers) or graphics (such as lines and circles).

Second, you tell the computer what “’color set’’ to use.

95



Any time your program out-
puts text (PRINT, INPUT),
the computer automatically
performs a SCREEN 0,0
command. In a “'2-color
mode,” described in the
next chapter, this gives you a
black and green screen. -

96

SCREEN type, color set displays the current graphics or text screen

type is O (text screen) or 1 (graphics screen)
color set is 0 or 1

Note: If type or color set is any positive number greater than 1, your

computer uses 1.

in the "Lines’’ program, change Line 20 to:

Then run the program. Does your computer "hang up’’? (Press (BREAK) tc

20 SCREEN @+

regain control.)

Actually, the computer ran “’Lines,’’ just as before. This time, though, it did
not show you the graphics screen. You asked to see the text screen instead.

Now change Line 20 to:

Notice that you have the graphics screen again, but this time the color set

20 SCREEN 1.0

has been changed.

At first glance, it appears that you have only 2 color choices—0 and 1.
Actually, though, you're choosing from a much greater variety: You're

switching color sets, not individual colors.

Your

Look

clears the graphics screen. (It serves the same function for the graphics

Green/Yellow/Blue/Red
Buff/Cyan/Magenta/Orange

Color Set 0
Color Set 1

DO-IT-YOURSELF PROGRAM 16-1

Do you understand SCREEN? If you do, write a program that switches
from text screen to graphics screen. You might wantto puta loop in the
program so that it changes the color set after it loops through the
program. This way you can see all the SCREEN features at work.

Clearing the Silver Screen
(PCLS)

“Lines’’ program should look like this:
S PMODE 141

i@ PCLS

20 SCREEN 11

23 LINE (0+0)-(255:191) +PSET

30 LINE (0,191)-(255,:0) +PSET

40 GOTO 40

at Line 10. It contains the PCLS statement. This statement simply

screen as CLS does for the text screen.)



Here is the syntax for PCLS:

PCLS color clears the current graphics screen

color is 0-8. If you omit the color, the computer clears the
screen to the current background color.

The ““Lines’’ program doesn‘t make use of PCLS’s color option. Therefore,
the computer uses the current background color, buff. Retype Line 10:

1@ PCLS G

Run the program. Your screen now displays orange lines on a cyan
background.

Learned in Chapter 16

BASIC WORDS CONCEPTS
SCREEN Displaying the current screen
PCLS Clearing the graphics screen
Notes

97



98

CHAPTER 17

MINDING YOUR PMODES

What lets you produce exciting graphics is the massive size of graphics
memory. To get a perspective on this, contrast graphics and text memory:
Text memory has 512 memory locations; graphics memory has up to
12,288!

You can use the power of graphics memory in three ways:
To produce graphics with very high resolution (fine detail).
To produce graphics with many colors.

To produce fast-changing, ""animated’’ graphics by retaining many
graphics screens in memory at once.

How much you can use of each of these features depends on how you
“set”” graphics memory. The more you use of one feature—such as
retaining many screens in memory—the less you can use of the other
features (high resolution and colors).

PMODE—the unknown statement in the Lines’’ program—is what sets
the features you want to use. PMODE lets you set 5 "'modes,”” shown in
Table 17-1. Each mode, of course, has its own trade-off of features.

Table 17-1/ PMODE Settings

Resolution Colors Screens
PMODE 4 high 2 2
PMODE 3 medium 4 2
PMODE 2 medium 2 4
PMODE 1 low 4 4
2 8

 PMODE 0 low



“Lines”’ in Mode 4

Bring back "’Lines’’ and see what it looks like in a different mode. In case
you’ve forgotten “’Lines,” here it is:

5 PMODE 141

190 PCLS

20 SCREEN 141

25 LINE (0+0)-(255+181) +PSET
30 LINE (0,191)-(255+0):PSET
49 GOTO 40

Now change from Mode 1 to Mode 4.
S PMODE 4.1
Run the program. You should spot two feature changes right away:

The color changes because you shifted from a 4-color mode
to a 2-color mode.

The lines are much finer because they’re in high resolution.

(The next chapter talks about the third feature; the one having to do
with storing more than one graphics screen in memory.)

Colors a la Mode

A 2-color mode, just like a 4-color mode, has 2 color sets. You saw one of
the 2-color sets—black and buff-~when you ran "’Lines”’ in Mode 4. To see
“Lines” in the other 2-color set—black and green—make this change:

20 SCREEN 1.0

Table 17-2 shows what color sets you can use in 2-color and 4-color
modes.

Table 17-2/ Color Sets

2-Color 4-Color
 SCREEN 1,0 Black/Green Green/Yellow/Blue/Red
~ SCREEN 1,1 Black/Buff Buff/Cyan/Magenta/Orange

‘“‘Lines”’—Through Thick and Thin

Notice that when you ran ’Lines’” in high resolution (Mode 4), you didn’t
have to change any dot positions. Color BASIC uses the same 256 x 192
screen grid, no matter what the resolution is.

For example, (128,96) is always the center of the screen, no matter what
resolution you're using, and (0,0) is always the upper-left corner of the
screen.

The size of each dot on the screen, though, is different in each resolution:

Low resolution uses four grid dots to set a screen dot. When the
computer sets Dot (0,0), for example, italso sets (1,0), (1,1),and (0,1).

Medium resolution uses two grid dots to set a screen dot. When the

Think of when you first
started drawing. You prob-
ably used wide crayons.
When you got better, you
began using thin crayons so
that you could draw thin
lines—lines  with  better
“resolution.”

99



100

computer sets Dot (0,0), it also sets (1,0).

High resolution uses only one grid dot to set a screen dot. When the
computer sets Dot (0,0), that's all it sets.

Thus, a diagonal line in low resolution looks more like a stairstep than one
drawn in high resolution:

L1

] 1

Low resolution High resolution

And the number of different screen positions you can use in low resolution
is only one-fourth what you can use in high resolution (see Table 17-3).

Table 17-3/ Graphics Screen Resolution

Screen Positions Size of
Available Each Dot
High resolution 256 x 192

Medium resolution 128 x 192

Low resolution 128 x 96 EH

Here is a program that shows a box cycle through each mode. Notice
that with each mode the box’s lines go from thick to thin and its colors
go from 2 colors to 4 colors.

5 FOR MOOE = @ TO 4

19 PMODE MOOE +1

20 PCLS

30 S5CREEN 1,1

49 LINE (754+50)-(125,100) +P5ET sB

SO0 FOR Y = 0 TO S@@: NEXT Y
B® NEXT MODE
70 GOTO 5

This is PMODE’s format. The next chapter shows how to use use the
second parameter, start page.



PMODE mode,start page sets the current graphics screen in graph-
ics memory

mode specifies the features you want to use in graphics
memory. If you omit mode, the computer uses the last
mode or (if none) Mode 2.

start page specifies on which page in graphics memory to
start a graphics screen. If you omit start page, the com-
puter uses the last start page or (if none) Page 1.

Therefore, if you omit PMODE, the computer uses PMODE

2,1,
Learned in Chapter 17
BASIC WORDS CONCEPT
PMODE Selecting a resolution mode

Selecting color availability

Notes

Keep in mind that the
graphics screen is always
full of “dots.”” The issues are
simply how many, what
size, and what color.

101



102

CHAPTER 18

FINDING THE RIGHT PAGES

In writing this book, we’ve “’stored’’ chapters on pages. Some chapters
require more pages; some less.

In the same sense, Color BASIC stores graphics screens on 1,536-byte
blocks of graphics memory called “’pages.” Some screens require more
pages; some less.

Table 18-1 shows how many pages it takes to draw a screen in each mode.
As you can see, a screen drawn in a higher mode (which offers higher res-
olution or more colors) consumes more memory pages than a screen drawn
in a lower mode.

Table 18-1/ Pages Required for Graphics Screens

Screert Pages Required
Mode 4 Screen 4 pages
Mode 3 Screen 4 pages
Mode 2 Screen 2 pages
Mode 1 Screen 2 pages
Mode 0 Screen 1 page

See what happens if you store the now famous (infamous) “’Lines’’ screen
on different pages.

3 PMODE 1.1

19 PCLS

29 SCREEN 1 »1

25 LINE (@,0)-(255,191) »PSET
30 LINE (2,191)-(255,0)»PSET
49 GOTO 49

Focus on PMODE. As you know, the first PMODE parameter tells the
computer to start a Mode 1 screen. And, as Table 18-1 tells you, a Mode 1
screen requires two pages.

The second parameter tells the computer to start the screen on Page 1.
Thus, the 2-page "Lines’”’ screen is on Pages 1 and 2.

To put the 2-page “’Lines’’ screen on Pages 3 and 4, type:
5 PMODE 1,3

Run the program. This shows the same screen, but the screen is in on
entirely different pages.



How about storing two screens—one on Pages 1 and 2, and another on
Pages 3 and 47 Change Line 5, delete Line 20, and add Lines 27 and 28.
What you end up with is this:

5 PMODE 141

19 PCLS stores screen on
25 LINE (@:0)-(255,191)PSET Pages 1-2

27 PMODE 143

28 PCLS stores screen on
39 LINE (9,191)-(255,0) +PBET Pages 3-4

49 GOTO 4¢

The first part of the program starts a Mode 1 screen on Pages 1-2. It clears”
this screen and puts a line on it.

The next part of the program starts another Mode 1 screen on Pages 3-4. It
clears this screen and puts a line on it.

Run the program and you won't see either screen, because there’s no
SCREEN statement. So add SCREEN:

35 SCREEN 11
Now run the program and you see one screen—the one stored on Pages
3-4.

Whenever Color BASIC displays a screen, it uses your most recent PMODE
instruction to tell it what the ““current graphics screen’” is. In this case, the
most recent PMODE—PMODE 1,3—tells Color BASIC that the current
graphics screen is a Mode 1 screen on Pages 3-4.

Insert another PMODE line just before SCREEN, and Color BASIC displays
a Mode 1 screen on Pages 1-2:

32 PMODE 1.1

Just for kicks, have Color BASIC display a Mode 2 screen that starts on
Page 2. Any guesses on what you'll see? Change Line 32 to PMODE 2,2
and run the program. Since Mode 2 requires two pages, you see what'’s
on Pages 2-3. And, since this is Mode 2, you see this screen in 2 colors
with medium resolution.

Flipping Screens
As you know, animators make cartoons by drawing many still pictures and
then "'flipping”’ through them.

So here’s the moment you've been waiting for! This program flips screens
to show two lines in motion:

5 PMODE 141

——

19 PCLS stores Page 1-2 screen
25 LINE (@:0)-(255+191) 4PSET

27 PMODE 1.3

28 PCLS stores Page 3-4 screen
39 LINE (©,191)-(255+@) sPSET

32 PMODE 1.1
34 SCREEN 141 displays Page 1-2
36 FOR I=1 TO Z200:NEXT I jscreen

You may have noticed that
all the graphics statements
(LINE, PPOINT, PSET, PRE-
SET, PCLS, SCREEN, and
COLOR) produce graphics
on the “current graphics
screen.” The most recent
PMODE statement is what
sets the current graphics
screen.

Did you know that it takes
more than 12,000 individual
drawings to make just one
7-minute cartoon? Wouldn't
a computer be a help there!

103




If you ever have a con-
flict  between  program
memory requirements and
video  memory  require-
ments, you'll get a ?0M
ERROR (Out of Memory).

104

38 PMODE 1.3

4¢ SCREEN 1.3 displays Page 3-4
42 FOR I=1 TO 2@Q:NEXT I ~  screen

44 GOTO 32

Adding Pages

You can use a maximum of 8 pages of graphics memory—Pages 1-8.
However, when you first start up, Color BASIC gives you only half that
amount—Pages 1-4. For example, make this change to “"Lines”:

3 PMODE 1.4

Run “Lines” and you get a ?FC Error. You're asking Color BASIC to use
Pages 4-5, but Page 5 is not available!

To remedy the problem, insert Line 4 and you now have all 8 pages.
4 PCLEAR B

PCLEAR lets you reserve from 1 to 8 pages of memory. If you use
PCLEAR, it needs to be your program’s first or second statement (after
CLEAR, if you use CLEAR):

PCLEAR pages reserves pages of graphics memory
pages is the amount of graphics memory to reserve (0-8)

On startup, the computer automatically reserves 4 pages. Use PCLEAR
to reserve more or fewer pages.

You may wonder why we don’t use PCLEAR 8 all the time. The reason:
PCLEAR 8 decreases program memory. Sometimes you need more
program memory; other times you need more graphics memory. PCLEAR
sets the balance.

Up and Down, Up and Down

You probably think your computer is a little crazy, but now we’ll prove that
it's a real yo-yo. In fact, you can call this program “Yo-Yo.” Enter and run
it.

1¢ PCLEAR 8

2@ FOR P=1 70O B

3@ PMODE @,P

4@ PCLS

3@ LINE (12B:@)-(138+1@+(P-1)%15),PSET

6@ CIRCLE (128+P*15),15

7@ NEXT P

B@ FOR P=1 TO B:G0SUB 11@:NEXT P

9¢ FOR P=7 TO 1 STEP -2:G0SUB 11Q:NEXT P

12@ GOTO 8¢

11¢ PMODE @.P

120 SCREEN 1@

130 FOR T=1 TO 1@:NEXT T

14@ RETURN



With the exception of CIRCLE (see the next chapter), you've already
learned all the features used by this program.

PCOPY

Using PCOPY (”’page copy’’) you can copy one page of graphics memory
to another. Here is the format for PCOPY:

PCOPY pagel TO page 2 copies pagel to page2

For example, if you want to copy Page 3 to Page 8, type:
PCOPY 3 TO 8

One advantage of PCOPY is it can shorten your programs by eliminating
repetition.

Keep in mind PCOPY copies one graphics’ memory page. Unless you're in
Mode 0, this is not one screen. For example, in Mode 4, the above
statement copies only one-fourth of a screen.

DO-IT-YOURSELF PROGRAM 18-1

The following program displays 4 squares that are on 4 different
memory pages on the screen at the same time. Run it, and then shorten
the program using PCOPY.

4 PCLEAR B

5 PMOOE 3.4

19 PCLS

11 SCREEN 1.1

12 LINE (110.,20)-(1290:39) »PSET B
29 PMOOE 3.3

21 SCREEN 1.1

22 LINE (119,29)-(1290,3@) »PSET 4B
39 PMODE 3.2

31 SCREEN 1.1

32 LINE (110,20)-(120,30) ,PSET B
49 PMODE 341

41 SCREEN 1.1

42 LINE (110,20)-(129,30),PSET,B
59 GOTO S50

105



DO-IT-YOURSELF PROGRAM 18-2

Using LINE and start page, simulate a lightning storm. (Put ““crazy
lines’” at random positions on different pages. Then switch back and

forth between pages.)

Learned in Chapter 18

BASIC WORDS CONCEPTS
PCLEAR Reserving pages for graphics
PMODE Selecting a start page
Flipping pages to simulate motion
PCOPY Copying graphics from one page to another
Notes

106



CHAPTER 19
GOING IN CIRCLES

Does all this talk about SCREEN, PMODE, and PCLEAR have you going in
circles? If so, you haven’t seen anything yet!

For example, you can create a full circle or ellipse, or a partial circle or
ellipse using a single statement, CIRCLE. Here is the syntax of CIRCLE:

CIRCLE (h,v),r,c,hw,start.end draws a circle on the current graphics
screen

h is the horizontal position of the centerpoint (0 to 255).

v is the vertical position of the centerpoint (0 to 191).

ris the radius in screen points.

cis any available color (0-8). If you omit ¢, the computer uses
the foreground color.

hw is the height to width ratio {0 to 255). If you omit hw, the
computer uses 1.

startis the starting point (0 to 1). If you omit start, the computer
starts at 0.

end is the ending point (0 to 1). If you omit end, the computer
uses 1.

If the start point is equal to the end point or if you omit both the
start and the end, the computer draws the complete
ellipse.

To draw a circle, you need only the centerpoint (h,v) and the radius (r),
which is the distance from the center in points.

First, count over on the h-axis, then down on the v-axis to locate the
desired center. Then, once you specify that point, indicate the circle’s
radius. The largest radius that fits on the screen is 95. If the radius is larger
than 95, the circle “flattens’” against the edges of the screen.

Bring your "Lines” program back into service.

5 PMODE 141

16 PCLS

20 SCREEN 1 +1

25 LINE (0+2)-(255:181) +PSET
30 LINE (@2,191)-(255:0)PSET
49 GOTO 40

107



Your program should read:

5 PMODE 1.1

10 PCLS

20 SCREEN 1.1

30 CIRCLE (128,88)
198

49 GAOTO 49

108

Delete Line 25 and change Line 30 as follows:
3® CIRCLE (128,9E8),95

Run the program. Your TV should display a somewhat scruffy, orange
circle on a buff background. Are you wondering why the circle isn’t truly
round? Look at Line 5 and you’ll see; the computer is in Mode 1 (medium
resolution).

Change Mode 1 to Mode 4 (high resolution) as follows:

5 PMODE 441

18 PCLS

20 SCREEN 1,1

30 CIRCLE (128,96),95
49 GOTO 40

Run the program. Now that’s a circle! (It should be a buff circle on a black
background.)

DO-IT-YOURSELF PROGRAM 19-1

Using the program above, generate a bull’s eye. You can do this one of
two ways:
Add a separate program line for each concentric circle but use a
common center (h,v coordinate).

Use aFOR .. . NEXT loop with a STEP 10 to have the computer
do the work for you.

DO-IT-YOURSELF PROGRAM 19-2

Do you still have the program for the house you built? How do you
expect to get into the house without a doorknob? Use CIRCLE to put a
doorknob on the front door. Your Graphics Screen Worksheet is
helpful in locating the exact point you need.

Note: If you use medium or low resolution, a circle small enough
to serve as a doorknob does not have much detail. Run the pro-
gram in Mode 4 for more detail.

Coloring the Circle

After you decide on the circle’s radius, choose its color. Using 2-color
mode, you haven’t much choice, but using 4-color mode (Mode 1 or 3),
you'll find the color option an exciting feature.



Your program should read:

5 PMODE 1.1

1@ PCLS

2¢ SCREEN 1:1

3@ CIRCLE (128.,96),85
49 GOTO 4@

First, make the circle a more manageable size:
30 CIRCLE (128.,96) +30

Now, for a little variety, change the color to cyan:
3¢ CIRCLE (128,96) :30:6

It's as easy as that! In fact, you can change the circle’s color to any of the
available colors.

Putting on the Squeeze

Did you ever take a Hula-Hoop, bicycle tire, or buggy wheel and squeeze
it with both hands to form an ellipse?

Similarly, you can change circle on your screen into an ellipse by using the
height/width ratio (hw) option.

HEIGHT WIDTH

The width of the ellipse is equal to the radius. The height is determined by
hw. If hwis 1, the computer draws a circle. If hw is greater than 1, it draws
anellipse thatis higher than itis wide. If hwis lessthan 1, itdraws an ellipse
that is wider than it is high. For example, this program draws a circle:

5 PMODE 4.1

1@ PCLS

20 SCREEN 1.1

3@ CIRCLE (128,96) +3@ 111
49 GOTO 49

If however, you change hw as shown here, the program draws a vertical
ellipse:

2@ CIRCLE (128,96) :30 4.3
If you change hw as shown here, it draws a horizontal ellipse:
30 CIRCLE (128:9B) 430+ +,25

If hw equals 0, then the "ellipse’”” becomes “infinitely” wider than it is
high. In other words, it becomes a horizontal line.

As hw increases past 1, the "ellipse” approaches a vertical line.
Change Line 30 in the following ways and run the program:

3@ CIRCLE (12B:+86) +30::0

33 CIRCLE (128:96) 30,100

Notice that your CIRCLE
statement does not include
the color code. Omitting the
code tells the computer to
use the foreground color.
You must include the com-
ma, though, to indicate to
the computer that you are
omitting the ¢ and that the
number specifies the hw
ratio.

You could say the circle is
finally on the straight and
narrow path.

When you use 0, imagine
you're looking at a coin from
the edge, and you’ll have a
good idea of what we mean.

109




110

From Start to Finish . . .

Suppose you want to draw only part of a ellipse (an arc). To do this, you
must list the ellipse’s center point (h,v), its radius (1), and its height/width
ratio (hw). If you wish, you may precede hw with the color (c).

Note: To draw an arc, you must specify hw. For a normal arc, use
hw 1. )

From the above information, the computer knows the location, width, and
height of the ellipse. Now you can tell it how much of the ellipse to draw.

To do this, specify the start of the arc (0 to 1) and end (0 to 1) of the arc,
following the chart below. Keep in mind that the computer always draws

clockwise. .75
.50 0
.25
Suppose, for example, you want to draw this arc:
75
.25

To do so, use this statement:
30 CIRCLE (128,9B) 330 +1+.25,.,75

Now change the statement to draw this arc:
.75

.25
Is this your new Line 307

30 CIRCLE (128,98)+304+14+,75,+,25

DO-IT-YOURSELF PROGRAM 19-3

Has night fallen on the house you built? If 50, you might want to shed
some light on the subject by putting a crescent moon in the corner. -
This requires two intersecting arcs and some trial and error on your
part.

DO-IT-YOURSELF PROGRAM 19-4

Maybe it’s cold, as well as dark, around your house. Ifso, build afirein
the fireplace and show smoke coming out the chimney. (Use CIRCLE
to generate a spiral that simulates the smoke.)



Learned in Chapter 19

BASIC WORDS CONCEPTS

CIRCLE Drawing a circle or an ellipse
Coloring a circle or an ellipse
Drawing an arc

Notes

111



112

CHAPTER 20

THE BIG BRUSH-OFF

You might think we've forgotten this is a Color Computer. So far, it's been a
little dab here and a splotch or two there. You'll never create a masterpiece
that way! Well, it's time to loosen up a little and paint the town, if not red,
then at least a bright orange.

The Extended Color BASIC graphics function PAINT lets you “’paint” any
shape with any available color.

Here is the syntax for PAINT:

PAINT (h,v),c,b paints the current graphics screen

h is the horizontal position (0 to 255) of the point at which
painting is to begin.

v is the vertical position (0 to 191).

c is the color (0 to 8).

b is the border color at which painting is to stop (0 to 8).

If the computer reaches a border other than that of the specified color, it
paints over that border.

Change the ""Lines” program as follows:

3

1@
20
3¢
4@
S0
GO
7@

PMODE 31

PCLS

SCREEN 1,1

LINE (@,8)-(255,191),PSET
LINE (@,191)-(255,0),PSET
CIRCLE (128,9B),90

PAINT (135,125),8.8

GOTO 7@

Before you run the program, can you predict the results? Lines 30 and 40
make the intersecting lines. Line 50 generates a circle the center of which is
at the point where the two lines intersect. That part should be easy, but
what about PAINT in Line 60?



If you guessed the computer goes to screen position (135,125) and paints
with orange until the paint reaches an orange border, you're right!

Delete Line 30 and then run the program. Now that you redefine the
borders, the computer paints half the circle.

DO-IT-YOURSELF PROGRAM 20-1

Can you paint the entire circle? You can do this two ways. One
involves adding a line; the other involves deleting a line.

By the way, did you notice the computer’s mode and color set? Mode 3 is a
4-color mode, and Color Set 1 gives you buff, cyan, magenta, and orange.

Stay in Mode 3, but change the color set (SCREEN 1,0) and run the
program. Without changing any other lines, you should get a red circle
(border) on a green background.

To avoid confusion about color, change the PAINT color to fitthe color set:
B@ PAINT (135:128):2,4

Now when you run the program, the semicircle should be painted yellow
(Code 2) until the computer encounters the red (Code 4) border.

DO-IT-YOURSELF PROGRAM 20-2

Do you still have your house? It probably looks a little plain, maybe
even shabby. Why don’t you spruce it up with some paint?

DO-IT-YOURSELF PROGRAM 20-3

Add a garage to your house, then use PAINT to raise and lower the
garage door. Since the painting action always goes up first, this takes a
little refining on your part. Add a delay before and after the opening.
(With CIRCLE, add the sun.) By the way, did you notice the computer’s
mode and color set? Mode 3 is a 4-color mode, and Color Set 1 gives
you buff, cyan, magenta, and orange.

Learned in Chapter 20

CONCEPTS
Painting any figure

BASIC WORDS
PAINT

Remember, you can paint
using only those colors that
are available in your mode
and color set.

But you didn't specify red
lines and red paint! Do
you have any idea what
happened?

When the computer is in a
4-color mode and you
specify a color it can’t sup-
ply, the computer subtracts
4 from Codes 5 through 8.
(It interprets 0 as 3.)

113




Notes

114



CHAPTER 21

DRAW THE LINE
SOMEWHERE

You already know how to create lines, ellipses, and boxes. Now how
would you like to learn a shortcut for doing some of those things? The
shortcut is DRAW, which lets you draw a line (or series of lines) by
specifying direction, angle, and color—all in the same program line! Here

is the syntax of DRAW:

DRAW line draws a shape on the current graphics screen

lineis a string expression that may include the following motion
commands, modes, and options:

Motion Commands

Move the draw position

Left

Right

45-degree angle

135-degree angle

225-degree angle

315-degree angle

Execute a substring and return

Modes

Options

No update of draw position

N =
B = Blank (no draw, just move)
Note: If line is a string constant, you must enclose it in quotes.

Always insert the B option directly before the M motion
command; otherwise, unwanted lines may appear.

115



This program probably has
replaced your dog as your
best friend.

5 PMODE 3.1t

10 PCLS

20 SCREEN 1.1

25 DRAW "BM128,961%
UZ5% R25% D251
Lzs"

4¢ GOTO 49

To make the program easier
to read, we've separated
each motion statement with
a semicolon (;). You
needn’t do this. You must,
howeve;, always separate
the (h,v) coordinates with a
comma (,).

116

Earlier you learned how to create a box using LINE. To do this, you may
have had to do some difficult figuring with the Graphics Screen Worksheet
to locate the necessary start and end points.

With DRAW, you have to locate only the start point and then tell the
computer in which direction to draw and how far to do so. If you omit the
start point, the computer starts at the last DRAW position or—if you
haven't previously used DRAW—at the center of the screen.

Use your “Lines” program to try out DRAW. Delete Line 30 and change
Line 25 to the following:

23 DRAW "BM1Z2B,89B3iUZSIRZSID2SLEE"

Presto! Can you guess why the square’s lower left corner is at (128,96)?
Look at the first two numbers inside the quotes.

The motion command, M, tells the computer at which point to later begin
drawing.

M h,v tells the computer at which point to begin drawing
h is the horizontal position (0 to 255).
v is the vertical position (0 to 191).

Note: Always preface M by the letter B; if you do not,
unwanted lines appear.

The above program tells the computer to start drawing at (128,96), draw up
(U) 25 points, right (R) 25 more, down (D) 25 more points, and finally left
(L) 25.

Note: If you omit the line’s length, the computer uses 1 as the
length.

Setting the Square on Edge
(Diagonal Lines)

Instead of drawing horizontal and vertical lines, stand the square on one of
its corners. To do this, substitute E, F, G, and Hfor U, R, L, and D in Line 25:

23 DRAW "BMI1ZB,9B3EZSIF25iGESHES"

This DRAW starts at (128,96) too. Instead of going up, however, the first
line angles off at 45 degrees; the computer draws the next 3 lines at their
designated angles.

If you are in Mode O or T and use E, F, G, or H to generate a line that has an
odd-number length and at least 1 odd-number coordinate (h,v), Lines F
and H have a slight “hitch”” at the midpoint. If both coordinates are
even-numbered, Lines E and G have the "hitch.” This is normal.

DO-IT-YOURSELF PROGRAM 21-1

You already know your computer is the star of the show, but can you
prove it by drawing a star? Use the DRAW motion commands for both
perpendicular and diagonal lines.




Absolute M v Relative M

Suppose you draw a square and then want to draw another one nearby.
You know exactly how far away you want the second square to be, but
don’t want to have to locate the coordinates (h,v).

Another form of the M command lets you specify relative’”” motion instead
of "absolute’” motion. So far, you have used absolute motion; you have
specified points in terms of their coordinates (h,v). Using relative motion,
you can specify points in relation to the current point (the point lastdrawn).

Here’s the syntax for relative motion:

Y sign h-offset, v-offset lets you specify points relative to the cur-
rent point

h-offset is the distance to move horizontally from the current
position. If you precede it with a plus sign (+), the
h-position increments by the specified amount. If you
precede it with a minus sign (-}, the h-position
decrements.

v-offsetis the distance to move vertically from the current. If you
precede v-offset with a plus sign (+) or if you omit the
sign, the v-position increments by the specified amount. If
you precede it with a minus sign (-), the v-position
decrements.

Forexample, if you wish to create a second box at a position relative to that
of the first box in the (redefined) "’Lines” program, you might add this line:

39 DRAW "BM+15+1535U25iR23IDESLIS"

When the computer executes Line 30, the current draw position is
(128,96), which is the the last draw position in Line 25. So the lower left
corner of the new square is at (238 +15,96+15) or (255,111).
Change Line 30 as follows:

30 DRAW "BM+15,-15iUZSIRZSID2S3LESY
Run the program. The start point of the new square is (128 +15,96-15) or
(143,81).

DO-IT-YOURSELF PROGRAM 21-2

After all this heated activity, you're probably ready to cool off, so why
don’t you use DRAW to create an ice cube?

You can generate the entire cube using DRAW, or you can incorporate
a couple of LINE commands within the program. Try to use both
absolute and relative motion.

Tipping the Scales

What if the figures you draw turn out to be too big or too small?

The solution’s easy. Your computer has a built-in function that lets you
"scale” (up or down) any display generated by DRAW. All you have to do

Absolute motion: “Go to

the corner of 53rd Street
and Bomber Lane.”

Relative motion: "Go 2
blocks down, take a right,
and go 1 more block.”

When you use the scale-
down option, the computer
rounds the resulting line
length to the nearest whole
number, if it is not already
a whole number.

For example, "S2U25R25D
25125" results in a 12-1/2
x 12-1/2 square. The com-
puter draws a 13 x 13
square,

117




is use the Sx command in the string.

Sx lets you scale a display

x is @ number in the range 1 to 62 that indicates the scale
factor in units of 1/4 as shown here:

1/4 scale

2/4 scale

3/4 scale

4/4 (full) scale
5/4 (125%) scale
8/4 (double) scale
12/4 (triple) scale

Ut h WK —
mnn

o

12
etc.

If you omit x, the computer uses 4 (4/4=1).

After you enter an Sx command, the computer scales all absolute and
relative motion commands accordingly until you enter another.

Make your refined Lines”” draw a single square again. Do this by deleting
Line 30 and changing Line 25 as follows:

23 DRAW "SZIFMIZB,9B3U25IR255D25 L 25"

Run the program. The square in the lower left corner should be half the size
you specified.

To see how small or large a square can be, run the following program:

3 PMODE 4.1

i2 PCLS

20 SCREEN 1,1

23 FOR SCALE = 1 TO G2

30 5% = "8" + STR$(SCALE) + "3i"

33 DRAW S% + "BMI0,100UZQR20OD2QLZ2Q"
49 NEXT SCALE

30 GOTO S50

Don’t make the mistake of thinking that the smallest square is the one
specified in Line 35. The one we specified is the fourth one from the edge.

Color Me.. ..

DRAW’s C option lets you specify the color of a particular line.



First, list the "’Lines’” program:

5 PMODE 3,1

18 PCLS

20 SCREEN 141

3¢ DRAW "SZiBM1ZB,8B7UZ5IRESID2SL2SY
4¢ GOTO 4¢

Go back to full scale either by changing S2 to S4 or by deleting S2. Then,
just inside the first set of quotation marks in Line 30, insert:

]

Run the program. Does it display a cyan square on a buff background?

Replace the C6 (in program Line 30) with C8 and run the program. Did the

square turn orange?

C must take the following form:

Cx lets you specify a line’s color

x is the color code (0 to 8). If you omit x, the computer uses the
foreground color.

You can insert Cx anywhere inside the DRAW statement. All actions that
follow are the color you specify. For instance, change Line 30 to read:

3¢ DRAW "CBi BM1ZB,8GI1U2SiR25:
C63 Dz5iLZS™

Run the program. The program displays a 2-color square. The first 2 lines
drawn are orange. The second 2 are cyan.

What’s Your Angle?

Another option that is available with DRAW is A. This option lets you
specify the angle at which a line is to be drawn. After you include A in the
DRAW command, the computer draws all subsequent lines with the angle
displacement specified by Ax until you specify otherwise.

Your program should now read:

5 PMODE 3.1

18 PCLS

20 SCREEN 1,1

39 DRAW "CBIBM1ZB,9BIUZSS
RZ53iDESLZ3"

4¢ GOTO 4¢

If you want to "erase” a
line, draw another line on
top of it using the back-
ground color.

119



120

Here is the syntax for the A command:

Ax lets you specify the angle of a line
xis the angle code (0 to 3). All angles are measured clockwise.

0 = 0 degrees
1 = 90 degrees
2 180 degrees

3 = 270 degrees

]

if you omit Ax, the the computer uses AQ.

To illustrate this, change program Line 30 to read:

39 DRAW "ABIBM128.89G35025"
Run the program. Your screen displays a vertical line that is 25 points long.
Now change Line 30:

39 DRAW "ALliBM128.89G50U25"

Run the program. The line is now horizontal.

Just Shootin’ Blanks

If you want the next line you draw to be a ”blank’” or an invisible line,
include the B option.

Forexample, let’s say you are drawing letters of the alphabet and are ready
for the letter C, which is nothing but a square with the right side blank.
Change Line 30 as follows so the program generates such a figure:

32 DRAW "BM128,9G63U253iR25 3B ID2535L23"

Run the program. Remember, only the line immediately following the B is
blank.

DO-IT-YOURSELF PROGRAM 21-3
Printyour name on the screen using DRAW. This means you'll have to
stay in the graphics screen. Sure, it would be easier to write your name
on the text screen, but you can’t have “true” text and graphics at the
same time,

What! More Options?

Another of DRAW’s many features is N, the "'no update’’ option. N tells the
computer to return to its original (current) position after it draws the next
line. To see this, change Line 30 to read:

30 DRAW "MiZ8+9B6% Nj U255 Nj§ R253 Ni
DEZ35 Ni§ L253%"

Run the program. The computer draws a 25-point line straight up from
(128,96). It then returns to (128,96), draws the next line, returns, draws the
next, and so on. As a result, four lines radiate from the center of the screen,
each in a different direction (up, right, down, and left).



DO-IT-YOURSELF PROGRAM 21-4
Using DRAW's N option (and CIRCLE), have the computer draw a pie
that has 8 pieces. Once you've done that, cutout a piece of the pie and
put it over to one side.

String Constants v String Variables

As stated earlier, the string following DRAW can be either a constant—as
in the previous examples—or a variable.

To use astring variable, precede the DRAW statement with a program line
that identifies the variable as a string; then substitute the string for the
quoted material in DRAW. For example, add Line 25 and change Line 30
as follows:

25 A$="BM1ZB,9B3CB;UZ5iR253DZ5iLES"
30 DRAW A%

Run the program. The computer displays an orange box (25 x 25), the
lower left corner of which is in the center of the screen.

Extended Color BASIC offers a variation on this, called the "execute” (X)
action. While you execute a DRAW routine, the execute action lets you
execute another DRAW string, then return to and complete the first
operation. To do this, leave Line 25 as is so that it defines A$; then change
Line 30. The two lines read:

23 A%$="BM1ZB+9B3CHBIUZSIRE
3@ DRAW "BMIS 50 sUZSsFZS

Run the program. The computer starts drawing at (95,50) a line that
extends up (U25) and then right (R25). It then executes A$ sc that itdraws a
25 x 25 square, starting at (128,96). After executing A$, it returns to the
original (current) string and completes its execution (D25,125).

DO-IT-YOURSELF PROGRAM 21-5

Do-It-Yourself Program 21-3 shows that you can simulate text (let-
ters) on the graphics screen by drawing the letters. Use DRAW to
create all 26 letters of the alphabet. Store the DRAW commands in
strings. Then use the “execute” (X} action to arrange the letters into
words.

DO-IT-YOURSELF PROGRAM 21-6

Do you still have your house? If so, load the program again and use
DRAW to make the front door open and close.

Does that mean it's a
drawstring?

A semicolon must always
follow the dollar sign {even
though the other semi-
colons are not necessary):

HABIHKS IXCH

121



122

Learned in Chapter 21

BASIC WORDS

DRAW

CONCEPTS

Drawing visible lines

Drawing invisible (blank) lines

Scaling figures to size

Coloring lines

Returning the draw to its original position
Using string variables to draw '
Executing a second draw in the middle of the -
firse

Notes




CHAPTER 22

GET AND PUT:
THE DISPLAY WENT
THAT ARRAY

In previous chapters, you’ve learned a few ways to move figures from one
screen to another, but none is very efficient. Have no fear; there is a better
array {groan). It has to do with GET and PUT.

Using these statements, you can “‘get’’ a rectangular area from the screen,
store its contents in an “‘array’’ (an area of memory), and then "‘put’’ it back
anywhere you want on the screen. This is the best method for simulating
motion.

A who? A what? Arrays are
covered in Part lll, later in
this manual.

We use the term "rectan-
gle” to refer to the area
that contains the graphic
display. Of course, you
can't actually see the rec-
tangle. You'll have to visu-
alize it.  Here's an
illustration to help you:

| S———

The formats for GET and PUT are:

GET h1,vi-h2,v2,array, G gets a rectangle from the current graph-
ics screen and stores it in an array

h1,v1 is the rectangle’s upper-left corner.

h2,v2 is the rectangle’s lower-right corner.

array is an area in memory that stores the rectangle.

G stores the array in full graphic detail. It is required when
using high resolution (Mode 4 or Mode 3 with colors)
or when using the PUT action parameters. Otherwise,
garbage appears on your screen.

PUT hi1,vi-h2,v2,arrayaction puts a rectangle, stored in an array,
on the current graphics screen

h1,v1 is the rectangle’s upper-left corner.

h2,v2 is the rectangle’s lower-right corner.

array is an area in memory where the rectangle is stored.

action (shown on Table 22-1) tells the computer what to do
with the points stored in the rectangle.

Note: Be sure the computer is in the same PMODE for GET
as it is for PUT. Otherwise, you may not “'put’” what you
got!’

’”

123



How large a rectangle you
can store in an array de-
pends on how much mem-
ory you have. EFach point,
when stored in an array,
consumes 5 bytes of mem-
ory. In a 16K RAM system,
you can store no more than
1400 points in an array. If
your program is long, you
may have to use a smaller
array.

124

Type and run this program to see how GET and PUT work:

S PCLEAR 4

19 PMODE 3.1

15 PCLS

20 SCREEN 1.1

25 DIM V(2@ 20)

3¢ CIRCLE (20:20):10

33 GET (1@,12)-(30:30) sV

44 PCLS

42 FOR DLAY = 1 TO 3@@: NEXT DLAY
45 PUT (11@+110)-(130,130) ,V

3¢ FOR DLAY = 1 TO 30@: NEXT DLAY
6@ GOTO G2

The program draws a circle on one part of the screen and then moves it to
another. To do this, the computer:

1. Creates an array named V in memory (Line 25). Array V is big enough
to store a 20 X 20 rectangle.

2. Draws a circle on the screen (Line 30).

3. Gets a 20 X 20 rectangle containing the circle and stores it in the
Array V (Line 35).

4. Clears the screen {(Line 40).
Puts the 20 X 20 rectangle (stored in Array V) back on the screen.

Storing the Rectangle

As you can see from the above program, GET and PUT use an array to store
the rectangle. So, before you use GET or PUT, you need to create this array.

The DIM statement lets you do this.

DIM array(length, width) creates an array for storing a rectangle
the size of length X width points

Note: DIM should be one of the first lines in your program (after
CLEAR and PCLEAR, if you use them).

How large does the array need to be? This depends on how large a
rectangle you want to "get’’ or “put’’:

Width = h2 - h1

Length = v2 - v]
For example, the above program’s GET statement uses (10,10) and (30,30)

to specify a rectangle. Thus, the rectangle is 20 X 20: It has a width and
length of 20. The PUT statement uses the same size rectangle: 20 X 20.

Put Not What You See

You've now put a rectangle on the screen one way—with the PSET ac-
tion. {(When you don’t specify another action, the computer uses PSET.)
There’s more than one way, though, to put rectangles on the screen.



To see how the other actions work, start by running this program. It puts 15
rectangles on the screen with the PSET action.

3 PCLEAR 4

1@ DIM U (30,38

153 PMODE 2.1

20 PCLS

23 SCREEN 1.1

30 CIRCLE (128.:86).,30

33 PAINT (128:+83) 2,4

49 PAINT (128:+87),344

45 GET (898+81)-(128,111) 4,06
30 PCLS

55 FOR I = 15@ TO 1 STEP -10
60 PUT (I:B1-1/5)-(I+6@+111-1/5),V,PBET
63 NEXT I

78 GOTO 70

PSET sets and resets each pointas itis in the array rectangle. Each rectangle
it puts on the screen is the same as the one stored in the array.

Now change Line 60 in various ways to try other actions. First, try PRESET.
6@ PUT (I4+81-1/5)-(I+B0+111-1/%),U,PRESET

PRESET sets and resets the reverse of each pointin the array rectangle. Each
rectangle it puts on the screen is the reverse of the one stored in the array.

Try the OR action:
6@ PUT (I:81-1/3)-(I+B0+111-1/5),U,0R

OR sets each point that's either (1) set in the array rectangle or (2) already
set in the position where it’s putting the screen rectangle. Each rectangle it
puts on the screen has all points set that are stored in the array plus what is
currently on the screen.

For a strange effect, try the NOT action:
60 PUT (I4+B1-1/5)-(I+60,111-1/5) 0,NOT

NOT sets and resets the reverse of what’s on the screen. (NOT doesn’t care
what’s stored in the array.) Each rectangle it puts on the screen is the
reverse of the previous one.

Try the AND option with this program, and you won't see anything:
60 PUT (I4+81-1/3)-(I+460:111-1/3) 4 +AND

AND sets each point that (1) is set in the array and (2) is already set on the
screen in the position where it’s putting the rectangle. Any points thatdon't
meet both of those conditions are reset. In this case, each rectangle AND
puts on the screen has all points reset—you see nothing.

If the computer puts garbage
on your screen, perhaps you
have omitted the G option
with GET.

125



126

This is a summary of each action:

Option
PSET
PRESET

AND

OR

NOT

Function
Sets each point that is set in the array.

Resets each point that is set in the array; sets each
point that is reset in the array.

Compares each point in the array rectangle with the
screen rectangle. If both are set, the computer sets
the screen point; if not, it resets the screen point.

Compares each point in the array rectangle to the
screen rectangle. If either is set, the computer sets
the screen point.

Reverses the state of each point in the screen rec-
tangle regardless of the array rectangle’s contents.

DO-IT-YOURSELF PROGRAM 22-1

Use GET and PUT to send a spaceship up the screen and across its
outer limits.”” You might want to add a few asteroids and aliens to
make the voyage more exciting!

BASIC WORDS
GET
PUT

Learned in Chapter 22

CONCEPTS
Storing a screen display in an array

Returning the display to the screen in either
the same or a different position

Determining the state of the returned points
of the display

Notes




CHAPTER 23

A NEW KIND OF POINT

As you recall from the SCREEN and PMODE chapters, your computer has
two kinds of video memory-—text and graphics. And it uses these two
memories to create two kinds of screens——text and graphics.

All the extended graphics statements (such as LINE, CIRCLE, PPOINT, and
PMODE) create graphics screens using the massive power of graphics
memory. This lets you draw exciting, high-resolution, and fast-moving
images.

There are two kinds of images, though, that you can’t produce on a
graphics screen:

An image that uses all 9 colors (You can use no more than 4 colors on
a graphics screen.)

An image that uses text, as well as pictures (You cannot printtexton a
graphics screen.)

To produce these kinds of images, you need to draw pictures on a text
screen. Extended Color BASIC has 3 statements you can use for this
purpose:

SET—sets a dot on your text screen
RESET—resets a dot on your text screen

POINT-—tells what color a dot is on your text screen.

If these statements remind you of PSET, PRESET, and PPOINT, that’s no
accident. SET, RESET, and POINT perform the function on the text screen
as PSET, PRESET, and PPOINT perform on the graphics screen.

The analogy ends there, though. There are no text screen equivalents to
such powerful statements as DRAW, PAINT, and PMODE. On a text

screen, you can draw only one dot at a time.
First make your screen black:
10 CLS(@)
Now set a dot—a blue one—on the top-left corner of your text screen. Type
and run this program:
20 SBET(0:0,3)
39 GOTO 30
Set another dot—a buff one—on the bottom-right corner of your screen.
20 SET(B3+31+3)
As you may see, you do not use the 256 X 192 graphics grid to set dots on

your text screen. Instead, you use a 31 X 63 grid called the SET/RESET grid
(shown in the back of this book).

127



When you reset a dot on the
text screen, the computer
makes the dot black.

128

Setting Two Dots

To set two dots on a text screen, you need to plan. To find out why, run
a few programs. First, type and run this:

19 CLS(®)

20 SET(324+14:3)
30 SET(33:14:3)
49  GOTO 49

You should now have two blue dots—side by side—in the middle of your
screen. Change the color of the right dot so you'll have one blue and one
red dot. Type:

30 SET(33:14:4) v
Run the program again. This time, both dots are red.

Look again at the SET/RESET grid. Notice that the darker lines group the
dots inte “‘blocks!” Each block contains 4 dots. For instance, the block
in the middle of the grid contains these 4 dots:

Horizontal Vertical
Position 32 14
Position 33 14
Position 32 15
Position 33 15

Each dot within a block must either be:

the same color
or

black

The above program asks the computer to set two different-colored dots (red
and blue) within the same block. Since the computer can’t set them in
different colors, it sets them both the second color: red.

Type and run this program:
30 SET(34:14:4)

Since the dot in Position 34, 14 is in a different block, the computer
can set the two dots in different colors.

The Computer’s Face

Drawing pictures on the text screen will seem primitive to you after using
statements such as CIRCLE, DRAW, and PAINT. But if you want pictures
and text, you can use the following program as a guide.

Run this program, and you see computer’s face and text on the same
screen. SET and RESET draw the picture (using the SET/RESET grid) and
PRINT @ prints the text (using the PRINT @ grid).

3 CLs(@)

7 PRINT @ 397, "HELLO"}
19 FOR H = 15 TO 48

20 SBET(H:3,3)

30 SET(H»204+3)

490 NEXT H



FOR ¥V = 3 T0 20
SET(15:Y:3)
SET(48:V,:3)
NEXT W

FOR H = 28 to 38
SET(H:1B6:4)
NEXT H

SET(Z25:+10:3)
SET(38:+10.,3)

RESET(384+10) o
e 160 GOTO 140

Notice that this program is able to draw 5 colors on one screen—and could
actually draw all 9 colors.

These are the formats of SET, RESET, and POINT:

SET h,v,c sets a point on the text screen

h is the horizontal coordinate (0-63)
v is the vertical coordinate (0-31)
¢ is the color code (0-8)

RESET h,v resets a point on the text screen

h is the horizontal coordinate (0-63)
v is the vertical coordinate (0-31)

POINT h,v tells what color a point is on the text screen

h is the horizontal coordinate (0-63)
v is the vertical coordinate (0-31)

If You Have the Joysticks . .. |

If you have joysticks, connect them now by plugging them into the back of
your computer. They fit in only the correct slots, so don’t worry about
plugging them into the wrong places.

Now run this short program to see how joysticks work:

18 CLS

20 PRINT 8 @, JOYSTK(D) 3
3@ PRINT 8 5, JOYSTK(1)3
4@ PRINT @ 10, JOYSTK(Z) 3
50 PRINT @ 15, JOYSTK(3)3
6@ GOTO 20

See the 4 numbers on your screen? They're the horizontal and vertical
positions of the 2 joysticks’ "floating switches.”

Grasp the right joystick’s floating switch. (The joystick connected to the
RIGHT JOYSTICK jack on the back of the computer.) Keeping it in the
center, move it from left to right. The first number on the screen changes
from 0 to 63, going through all the intervening numbers.

Notice we’ve changed Line
50—the GOTO line.

=)

—

Be sure to type the semi-
colons at the ends of Lines
20, 30, 40, and 50.

129



=)

The second or fourth num-
bermay change also, but not
from 0 to 63.

This program uses joysticks
with text screen pictures.
You can just as easily use the
joysticks ~ with  graphics
screen pictures.

130

Move the left joystick’s floating switch from left to right. The third number
on the screen changes.

Now move the floating switches up and down, keeping them in the center.
Moving the rightjoystick up and down changes the second number from 0
to 63. Moving the feft joystick up and down changes the fourth number
from 0 to 63.

This is how the computer reads the joysticks’ positions:

JOYSTK(0) and JOYSTK(1) read the right joystick’s positions:
JOYSTK(O) reads the horizontal (left to right) coordinate.
JOYSTK(1) reads the vertical (up and down) coordinate.

JOYSTK(2) and JOYSTK(3) read the /feft joystick’s positions:
JOYSTK(
JOYSTK(

Whenever you read any of the joysticks, you must read JOYSTK(0). To find
out for yourself, delete Line 50 and run the program. It works almost the
same, except it doesn’t read JOYSTK(3) — the vertical position of your left
joystick.

2) reads the horizontal coordinate.

3) reads the vertical coordinate.

Delete Line 20 and change Line 60:
Be GOTO 3@

Run the program. Move all the switches around. This time the program
doesn’t work at all. The compuh: won't read any coordinates unless you
first have it read JOYSTK(0). Type these lines and run the program:

20 A = JOYSTK(®)
Be GOTO Zeo

Although the computer’s not printing JOYSTK(0)'s coordinates, it’s still
reading them. Because of this, it's able to read the other joystick
coordinates. Whenever you want to read JOYSTK(1), JOYSTK(2), or
JOYSTK(3), you first need to read JOYSTK(Q).

Painting with Joysticks

Type and run this program:

1¢ CLS(@)

20 H = JOYSTK(®)

3¢ U = JOYSTK(1)

4 IF U » 31 THEN ¥V = U . 32
B0 SET(H:V:3)

8¢ GOTO Zo@

Use the revolving switch of your right joystick to paint a picture. (Move the
switch slowly so that the computer has time to read its coordinates.)

Line 20 reads H—the horizontal position of your right joystick. This can be
a number in the range 0 to 63.

Line 30 reads V—its vertical position. This also can be a number in the
range 0 to 63. Since the highest vertical position on your screen is 31, Line
40 is necessary: It makes V always equal a number in the range 0 to 31.



Line 80 sets a blue dot at H and V.

Line 90 goes back to get the next horizontal and vertical positions of your
joysticks.

This uses only the right joystick. Perhaps you could use the left one for
color. Add these lines and run the program:

50 C = JOYSTK(Z)

B@ IF C < 31 THEN C =
7¢ IF C » =31 THEN
8¢ SET(H,U,L)

3
C=4d

Move your left joystick to the right, and the computer makes C equal to 3;
the dots it sets are red. Move it to the left, and the computer makes C equal
to 4; the dots it sets are blue.

Want to use your joystick buttons? Add these lines to the program:

1¢@ P = PEEK(B3280)
119 PRINT P
120 GOTO 1¢@

Now type:
RUN 19¢ (ENTER

This tells the computer to run the program starting at Line 100. Your
computer should be printing either 255 or 127 over and over.

PEEK tells the computer to look at a certain spot in its memory to see what
number’s there. Line 100 looks at the number in Position 65280. As long as
you're not pressing either of the buttons, this spot contains the number 255
or 127.

Press the right button. When you press it, this memory location contains
either the number 126 or 254.

Press the left button. This makes this memory location contain either the
number 125 or 253.

4

Using this information, you can make the computer do whatever you want
when you press one of the buttons. We’ll make it go back to Line 10 and
CLS(0) (clear the screen to black) when you press the right button. Change
Lines 110 and 120:

11¢ IF P 126 THEN 1@
ize IF P 254 THEN 1@

Delete Line 90 and add this line:
13¢ GOTO 20

Run the program and start ”’painting.”” Press the right button when you
want to clear the screen and start again.

If you press the buttons
when you‘'re not running
the program, you’'ll see
@ABCDEFG or HIJKLMNO.

Some joysticks will not read
six “’blocks” in each of the
four corners of your screen.

131



Learned in Chapter 23

BASIC WORDS

SET
RESET
JOYSTK
PEEK

Notes

132



CHAPTER 24

PLAY IT AGAIN, TRS-80

So you think your computer is a good artist, huh? Well, you haven’t heard
anything yet! Wait until you find out about its musical talents! Ready? Then
let’s get down to work and PLAY.

Your computer’s PLAY function allows you not only to play music, but to
compose it, as well.

Note: PLAY, of course, is not a graphics function. Therefore, you needn’t
preface your programs with PMODE, PCLS, or SCREEN.

Listen Carefully . ..

Here is the syntax for PLAY:

~ PLAY music plays the value of music, a string expression including
‘ the following:

note {a letter from A" to "G” or a number from 1 to 12).

octave (O followed by a number from 1 to 5). If you omit
the octave, the computer uses Octave 2.

note-length (L followed by a numeral from 1 to 255). If you
omit the note-length, the computer uses the current
length.

tempo (T followed by a number from 1 to 255). If you omit
the tempo, the computer uses T2.

volume (V followed by a number from 1 to 31). If you omit
the volume, the computer uses V15.

pause-length (P followed by a number from 1 to 255).

substrings. Precede substrings with an X and follow them
with a semicolon. Example: XA$;

133



134

Let’s Compare Notes
(NOTE)

Obviously, you can’t have music without notes. PLAY gives two ways to
specify the precise note you need.

A R — - ——— -
- - .-
= o - - o - -

e ————

The first—and probably easier—way to play the note you want is to enter
one of the standard musical notes—A, B, C, D, E, F or G. To indicate a
sharp note, follow the note with a plus sign (+) or with the pound sign (#).
To indicate a flat, follow it with a minus sign (—).

Forexample, A represents A natural; A# is A sharp; and A— is A flat. Type
the following to see (hear?) what we mean:

PLAY "A" (ENTER

To hear the change that a sharp and a flat can make, enter these lines:.

PLAY "A3iA#" (ENTER
PLAY "A-3AiA#3ATA-" (ENTER

You can do the same with all seven notes (A-G) on the scale, except B and
C.Since B# = C, you must use C. Likewise, since C — =B, you must use B.

A New ‘“Note’’-ation

Another way to specify a musical note is to use a number between 1 and
12, prefaced by the letter N. (If you omit N, the number alone indicates the
note.)

The numbers 1 through 12 represent every note on the musical scale,
including all sharps and flats. This is a more concise notation, although it is
more difficult to read if you already know the standard notation.

Note: Since PLAY does not recognize the notation B# or C—, use the
numbers 1 and 12, respectively, or substitute C for B# and B for C—.

To hear the full 12-tone scale, run the ““Scale’” program, which follows.

5 CLS

18 FOR N = 1 to 12 ‘N = NOTE
13 PRINT "NOTE#"3§ N

20 PLAY STR$(N)

38 NEXT N



Add a delay in the program so you can compare the numbers to the notes
as the scale goes up from 1 to 12 (C to B).

23 FOrR I = 1 TO 500: NEXT 1

Musical Note/Number Table
__Number |  Note
1 C
2 C#/D-
3 D 2 4 7 9 M
4 E-/D#
5 EF-
6 F/E#
7 F#/G—
8 G
9 G#/A~
10 A c| o | e | Fle|a]e]|c
11 A#/B -
12 B 1 3 5 6 8 10 12 1

DO-IT-YOURSELF PROGRAM 23-1
Modify the ““Scale’”’ program so it goes down instead of up.

Whole Notes, Half Notes,
Quarter Notes . ..
(NOTE-LENGTH)

Because the "’Scale’’ program does not specify note-length, the com-
puter automatically uses quarter notes, the initial "‘current value!’

Did you time the notes to be
To choose the note-length, use L followed by a number from 1 to 255. The SUfe?thij are four times as
number 1, for instance, denotes a whole note, 2 a half note, 4 a quarter | 08¢ It's not necessary; the

. ; ter’s internal clock
note, 8 an eighth note, 16 a sixteenth note, and so on. g?;’,fl;;r;ou'.n ernat cloc

In fact, you can use any number from 1 to 255. (Who ever heard of a 1/15th
note?)

Vary the note-lengths to produce a drum roll. Type:
PLAY “LZiASL45AIATLZIAIA" (ENTER

Lnumber  Note-Length Note
L1 Whole note o
L2 Half note d
L3 Dotted quarter note d.
L4 Quarter note d
L8 Eighth note Py
L16 1/16 note &
L32 1/32 note .F
L64 1/64 note &
L255 1/255 note

135



We bet you've heard of
“turning down the stereo”’
but not “turning down the
computer”’!

136

LZ indicates a half note; L4 a quarter note, so we played as follows: ""half,
quarter, quarter, half, half.”

PLAY "L1§ ASA#JA-" (ENTER

Notice that you needn’t repeat the L option for each note. PLAY uses the
current note value until you enter another L command to tell it otherwise.

In fact, most PLAY options discussed in the rest of this chapter use a
“current’” value until you change them.

Just for fun, try playing three 1/255 notes on A:
PLAY "LZ555A3A+3iA-" (ENTER

Now that’s staccato.

Love That Dotted Note

If you read music, you already know about "dotted notes.” The dot tells
you to increase the length of the note by one half its normal value. For
example, a dotted quarter note is equal to a '"3/8"' note.

You can play such a note by adding a period (.) or a series of periods
(...) to the Lnumber. Each period increases the note-length by 1/2 its
normal value. For example:

l4. = 1/4 + 1/8 = a 3/8 note

Try this:
PLAY "L4.,5ALBICILA.SESLBICIESCIESCSILAs5A"
ENTER

Let’s Go Up (or Down) an Octave or Two
(OCTAVE)
Our single octave (Octave 2) sounds fine, but, variety being the spice of

music as well as Irish stew, it gets a little boring when played over and
over (like a piano with only 12 keys).

To change octaves, use the letter O followed by a number in the range
1 to 5. (Any number out of this range results in an illegal function call
error.)

If you don’t specify the octave, the computer automatically uses Octave
2, which includes middle-C. Let’s try to play a simple C scale:

PLAY "CDEFGABAGFEDCBA" (ENTER



What happened? G is the highest note in Octave 2, so when the com-
puter reached A, it started over at the beginning of the octave. To get
out into Octave 3, try this:

PLAY "CDEFG30335ABA0ZIFEDCBA" (ENTER

Play It Again—Louder!
(VOLUME)
Sure, you can adjust the volume of your music by using the TV volume

control, but who wants to sit by the set all of the time? Especially when the
computer can adjust the volume for you.

Your computer does this with the V (volume) feature. All you need to do is
use V followed by a numeral between 0 and 31. If you don't specify the
value of V, your computer automatically uses V15.

The computer uses the current V value until you change it.

Adjust the volume on your TV to a normal setting and run this short
program;

5 CLS

12 PLAY "VS3AT V1@3AF VISIAS VZBIAT VZS5AS
U3asiA"

20 GOTO 1@

Getting a headache? Press (BREAK) to get out of the loop.

A Moment of Silence, Please
(PAUSE)

Maybe that last little program would be easier to listen to if all the notes
weren't played together. Use the P (pause) feature for a few moments of
silence between the notes and see if they sound better.

To put a pause between notes, use P followed by a number from 1 to 255.
Pause-lengths correspond to note-lengths with one important difference.
You can’t use dots (periods) with P. To compensate, just type a series of
pauses. For example, to get a 3/8 pause, type P4P8.

Change Line 10 in the last program to read:

12 PLAY "US35A5 P23 V1IB3A5 P25 VISiA;
P25 Y203AF P25 U253iAF P23 VU3@iAs PZ"

Actually, a half note pause (P2) between all those As doesn’t make them
sound much better, but you should get the idea of how P works.

It’s Time to Pick Up the Tempo
(TEMPO)

Right now the test program looks like this:

5 CLS

12 PLAY "VUS35ATP23 V1@3ATP2ZS VISIAIPES
U2@3AFPZ25 VZ33APZS U3BBIAIPZ"

28 GOTO 1@

We've left spaces between
each volume/note combina-
tion so you can read the
line without difficulty. The
spaces are not required.

137



A tempo that slow is almost
enough to keep you
awake—almost.

If you use machine-lan-
guage to generate the music
and “Tn"’ to slow the tempo,
would your computer be a
Slow-POKE?

138

It's passable, if not pleasurable, but the tempo (speed) is a little slow. You
can increase or decrease the tempo with T and a number from 1 to 255. If
you don't specify a tempo, your computer automatically uses T2. Start by
slowing down the tempo of the program:

12 PLAY "T13§ USiASPZ5 VIBSAIPZ: VIS3AIP23
VZBIAIP25 VUZBIATP25 V3QiAIPE"

Speed it up by changing T1 to T15. Now that’s more like it.

How about speeding it to the maximum, 255, and running the program.
That didn’t take long, did it?

Executing the Substring
X)
Remember DRAW’s execute (X) option? PLAY has a similar feature that lets
you execute a substring, then return to the original string and complete it.
The execute function takes the following form:
XAS$;

A$ contains a sequence of normal play commands and functions. X tells
the computer to PLAY A$.

Rearrange the demonstration program so that it executes a substring:

3 CLS

12 A% = "ATARTA-"

20 B% = "OS5iXAas:"

30 C% = "OL1iXAsiXBS"
49 PLAY C%

Run the program and follow its execution.

Note: Whenever you use the execute function, a semicolon (;)
must follow the dollar sign ($). In this example, you can delete all
semicolons except those following the dollar sign.

One Further Note . ..
(+,—-,<,>)
No, we're not going to spring a new note, like H or J, on you. We just have
one final way you can use some of PLAY’s options. With O (octave), V

(volume), T (tempo), and L (note-length), you can use one of the following
suffixes instead of adding a numeral:

Suffix Purpose

+ Adds 1 to the current value.

- Subtracts 1 from the current value.
> Multiplies the current value by 2.
< Divides the current value by 2.

Use the sample program to learn about these features.

3 CLS
19 PLAY "T2"



20 PLAY "AjA®iA-"
3¢ GOTO 2@

Notice that Line 10 sets the tempo. Run the program once just to get an ear
for it. Nothing’s changed; it's the same as always. Now insert T in Line 20.

20 PLAY "T+i AsAx®sA-"

Run the program. The plus sign automatically increases the value of T by 1
each time Line 20 is played. From a slow start you can really begin to fly!
Did you hear it shift gears somewhere around T100?

Now reduce the tempo, using a minus sign (—):

5 CLS

i@ PLAY "T2Z33"

20 PLAY "T-3 AjA#iA-"

30 GOTO 20
After a fast start, the computer finally manages to slow the tempo down to
1—one step at a time.

lsn’t multiplication faster than addition? In Line 10, reset the tempo to 2,
change T in Line 20 to T>, and let it rip.

10 PLAY "T2"
20 PLAY "T>i AjA%iA-"

You started out with T2, right? The computer multipled that value by 2 to 4,
4x2to08, 8x2to 16, and so on until it reached 255.

You can slow the tempo down just as quickly by dividing the current
tempo by 2 using ”<.”

19 PLAY "T233"
20 PLAY "T<§ AsAxsA-"

Remember, you can do the same thing with L, V, and O to change the
note-length, the volume, and the octave.

Roll Over, Beethoven

After all the hard work you’ve done lately, you deserve to be serenaded.

Here is the formula that you
can use to calculate the
note-length: note-length +
(note-length « number of
dots)/2

Haven't you had days like
that? You start at 255 and by
the end of the day, you're
hitting on one cylinder.

139



We dropped the "G” from
MARCHING in Lines 60 and
70 so the lines can fit on the
screen.

If you use PCLS3 to clear the
graphics screen and -then
make the computer play a
sad song, does that mean it’s
singing the blues?

140

Are you familiar with all the PLAY functions? If so, watch them at work in
the following program and see if you can name this tune!

o CLs
1828 A$ = "TOICIEIFIL1IGIPASLASCIESFILLIGY
185 B$ = "P4iL4SCIEIFIL23GIESCIESLLID"
118 C$ = "PBILAIEIESDIL2,5CLASCIL2E"
115 D% = "LA4SGIiGIGILISFSLASEF"
120 E$ = "L2iGIESLA4SCILBIDID+IDIESGILAsATLY
103350
125 X% = "XASIHBSINCH XD IHES "
138 PLAY X
Do you recognize that song? Dress it up a bit by adding these lines:
10 PRINT @ 96, STRINGS (3Z,"%")
20 PRINT @ 1687, "WHEN THE SAINTS"
38 PRINT @ 232, "GO MARCHING IN®
35 PRINT 8 288, STRINGS (32,"%")
48 FOR X = 1 TO S@0: NEXT X
45 CLSs
5@ PRINT 8 128, "DH WHEN THE SAINTS™ -
55 PRINT @ 1689, "OH WHEN THE SAINTS™
B® PRINT @ 192, "OH WHEN THE SAINTS

GO MARCHIN IN*®

65 PRINT @ 224, "YES I WANT TO BE IN THAT
NUMBER™

7@ PRINT B 256, "WHEN THE SAINTS GO MARCHIN
INII

Run the program now and sing along with TRS-80. What? You liked it so

much you want to hear it again. Okay, add these lines:
158 CLS
168 PRINT @ 13@¢, "PLAY IT AGAIN, TRS-8@"
1685 FOR X = 1 TO S00: NEXT ¥
17@¢ CLS
175 PRINT 233, "1‘D BE GLAD TO™
180 FOR I = 1 TO S@0: NEXT 1
185 GOTO 5

DO-IT-YOURSELF PROGRAM 24-2

Our rendition of “‘Saints’”” sounds fine, but it isn’t true New Orleans
style. Jazz it up to suit your own musical tastes. Try changing oc-
taves or adding a few sharps or flats.

DO-IT-YOURSELF PROGRAM 24-3

- Try some musical arrangements of your own. We've included sev-
eral in the Sample Programs at the back of the book.




Learned in Chapter 24

BASIC WORDS
PLAY

CONCEPTS

Generating musical notes, including dotted
notes

Determining note-length

Changing octaves

Adjusting the volume

Pausing between notes

Changing the tempo

Executing substrings

Using suffixes to give values relative to the cur-
rent value

Notes

141






SECTION 1ii

GETTING DOWN
TO BUSINESS

This section deals with information you want to manage. For example, you
may want to manage:

Checkbook receipts

Shopping items

Tax records

Inventory

Addresses

Records, books, or tape collections

In this section, you'll learn how to store, update, sort, and analyze informa-
tion to fit your own needs.






THE REAL THING

A special section showing displays
created by programs in this book.

Spiral

There’s a tunnel at the end of the
tunnel. When you assign variables
to CIRCLE, it’s possible to create a
spiral. This is one way you can sim-
ulate smoke coming from the chim-
ney of your house (see DO-IT-
YOURSELF PROGRAM 19-4).

Fantastic!

DO-IT-YOURSELF PROGRAM 21-2
shows you how to cool off with an
ice-cube. Another way is to turn on
the fan and watch it spin. And if
you let this program run for a
while, that's exactly what happens.
See Sample Program #19 for a list-
ing of this program.



Box

This is a 2-step process. First the
cube (created by DRAW and
PAINT) appears in its 3-dimensional
form. After a short delay, the box
unfolds so you can see all 6 of its
sides. This uses DRAW, along with
several LINE and PAINT statements.
See Sample Program #8.

Projection Studies

Starting at the upper left and going
down, vou can see different views
(top, front, side, and oblique) of a
“block”” You can also scale the first
three views up or down using
DRAW's ““Scale”” feature. (Since the
45-degree oblique view contains
three LINE statements, it can’t be
scaled.) See Sample Program #7.




In-Out

When you assign variables to a
COLOR and a LINE statement, this
is one thing the computer might do
with it. Take a look at Sample Pro-
gram #5 to see how easy this is.

Navaho Blanket

Actually, the size of this makes it
more like a muffler instead of a
blanket, but you should be able to
finish ““weaving’’ it. Basically, the
program uses only a couple of LINE
statements that increment at speci-
fied “steps” and a PAINT statement
or two. Incidentally, this might help
you with DO-IT-YOURSELF PRO-
GRAM 15-3. Sample Program #12,
gives you a complete program
listing.



Home, Sweet Home

One of your exercises throughout
this book is to “’build” a house (see
DO-IT-YOURSELF PROGRAMS 15-
2 and 19-4). Here's one you might
use as a model. In this instance, the
garage door is up (using PAINT),
the light is on, and the grass (gener-
ated by RND, DIM, and PSET) is
growing.

After the Boom Is
Over. ..

These concentric circles (increment-
ing at STEP 2) are used at the end
of the “Timebomb'" program (Sam-
ple Program #18). Notice that
when you use buff with high reso-
lution, it appears to produce several
colors, giving a metallic luster to
the display.




Painted Lace

This program requires DRAW state-
ments, a few buckets of PAINT, and

a lot of patience. Look at Sample
Program #13 and vou’'ll see the

way it's done

Open and Closed
Cubes

In DO-IT-YOURSELF PROGRAM
21-2 you drew the closed cube
Now "“open” it.



Rolling in the Clover

Sample Program #17 shows you
how to create an eight-leaf clover.
By changing the COS value in Line
35 to 2, you can generate a four-
leaf clover. What happens if you
change the COS value to 17 This
program is a good illustration of
PSET, SIN, and COS and a novel use
of pi.

N
AT -

‘s

#»

ot
J

-
y
mwena*l

C

Random Graphics

Random graphics are generated
when you assign random (RND)
values to LINE, CIRCLE, COLOR,
and PAINT and then let the com-
puter take over. For a listing of this
program, see Sample Program #11




Riding the Waves

Here the computer uses PSET, SIN,
and COS to draw sine/cosine waves
and LINE to draw the H-V axes.
Notice that each wave travels 360
degrees (from +180 to —180) and
that the H-axis increments 30 de-
grees at each gradation. This is a
good exercise in mapping (scaling
down) a program to fit the TV
screen. Sample Program #9 gives a
complete listing of this program.






CHAPTER 25
_TAPING

Your first and foremost task is to store your information permanently on
cassette tape. This, of course, requires a tape recorder.

CHRISTMAS LiIST:

RECORDS!

INVENTORY :
+ NUTS

- BArs

- SCREWS
* WASHERS
*NARLS

Ready to get organized? We'll start with your book collection. Here's a
small list of books:

1. WORKING

2. CAT'S CRADLE

3. SMALL IS BEAUTIFUL
4. STEPPENWOLF

If you've read your introduction manual, you know how to save BASIC
programs on tape. To save information, you need a program that follows
these steps:

STEPS FOR STORING INFORMATION ON TAPE

1. Ogen communication to the tape recorder so that you can output
{(send out) information to a file,

2. Output all information to the tape recorder file.

3. Close communication to the tape recorder.

Start the program with this line:
i¢ ODOPEN "O", #-1, "BOOKS"

This “opens’ communication to the tape recorder {"device #-1"') so that
you can “output” ("O"’) information. Whatever information you output,
the computer stores on tape in a “file’” named BOOKS.

Now output the information. Type:

15 CLS: PRINT "INPUT YOUR BOOKS--TYPE <HX>
WHEN FINISHED"

Z¢ INPUT "TITLE"S T%

3¢ PRINT #-14 T%

4¢ GOTO 1S5

—

A "“file” is a collection of in-
formation—such as book ti-
tles—stored under one
name.

145




—)

The computer clears the
screen after each title.

146

Line 20 “prints”’ (outputs) your book titles—not to the screen, but to device
# - 1, the tape recorder.

Then close communications. Type:

25 IF T$ = "XX" THEN 50
50 CLOSE #-1

The computer then closes communication to the tape recorder.

Add three more lines to the program:

1 CLS

Z2 PRINT "POSITION TAPE - PRESS PLAY AND
RECORD™"

4 INPUT "PRESS <ENTER:> WHEN READY" i R$

The program should now look like this:

1 CLS

2 PRINT "POSITION TAPE--PRESS PLAY AND
RECORD"

4 INPUT "PRESS <ENTER> WHEN READY" 3§ R%

1¢ OPEN "O", #-1, "BOOKS"

15 CLS8: PRINT "INPUT YOUR BOOKS - TYPE <XX:»

WHEN FINISHED"
20 INPUT "TITLE"S T%
25 IF T4 = "XX" THEN 5@
32 PRINT #-1; T%
49 GOTO 15
5¢ CLOSE #-1

Prepare the recorder.

Connect the recorder. Your computer’s introduction manual shows
how.

Position a tape in the recorder, and, if necessary, rewind the tape so
you'll have room for recording. (if you're using a non—Radio Shack
tape, position it past the starting leader.)

Press the recorder’'s RECORD and PLAY buttons so that they are both
down.

Then run the program. As soon as you press (ENTER), the cassette motor
turns on: The computer is opening a *file’” on tape and naming it BOOKS.

The program then asks for titles. Type:

TITLE? WORKING

TITLE? CAT’S CRADLE
TITLE? SMALL IS BEAUTIFUL
TITLE? STEPPENWOLF

TITLE? X

Each time you input a title, the computer prints it in a special place in
memory reserved for the tape recorder. When you finish, the tape recorder
motor turns on: The computer is printing all the titles to the recorder {Line
30) and then closing communication with the recorder (Line 50).

Your book titles are now all saved on tape in a file named BOOKS. To read
them back into memory, use just about the same steps.



STEPS FOR INPUTTING INFORMATION FROM TAPE

1. Open communication to a tape recorder so that you can input
information from a file.

o

Check to see if you're at the end of the file.

. Input information from the tape recorder file.

‘.tnw

Repeat Steps 2 and 3 until you reach the end of the file.

Close communication to the tape recorder.

Ut

To open communication, type:

60 CLS: PRINT "REWIND THE RECORDER AND
PREGS PLAY"

7@ INPUT "PREBS <ENTER> WHEN READY"3: R$

8¢ OPEN "I", #-1, "BOOKG"

This opens communication to the tape recorder—this time, to input in-
formation from the BOOKS file.

To input information, add these lines:

9@ INPUT #-1, B$
180 PRINT Bs

Line 90 inputs the first book title (B$) from the BOOKS file stored on tape.
(The variable name you choose makes no difference.) Line 100 displays
this title on your screen.

To check for the end of the file and close the file, add these lines:

85 IF EOF (-1) THEN 120
1ig GOTO 88
120 CLOBE #-1

Line 85 says if you are at the end of this file (in this case, the BOOKS file), go
to 120 and close communication with the tape recorder.

Note that EOF(-1) comes before the INPUT #-1 line. If it's after INPUT #-1,
you'll get an IE error—""input past the end of the file.”

List this last part of the program by typing LIST 60 - (ENTER). It should look
like this:

6@ CLS: PRINT "REWIND THE RECORDER AND
PRESE PLAY®

72 INPUT "PRESS <ENTER» WHEN READY"3 R%

8¢ OPEN "I", #-1, "BOOKS"

83 IF EOF (-1) THEN 120

a9¢  INPUT #-14 B¢%
18¢ PRINT Bs

11¢ GOTO 85

12¢ CLOBE #-1

Now run this part of the program. Type:
RUN B0 (ENTER)

When you press (ENTER), the recorder’s motor comes on while the com-
puter inputs items from tape. When finished, it displays the four items on
your screen.

Are you wondering what the
-1 means? EOF returns a -1
when you reach the end of
the file.

(— )

\r__”__._/

Be sure to press only the
PLAY button, Not RECORD.
Also, be sure to rewind the
tape.

If your computer becomes
“hung up” communicating
with the tape recorder, you
can regain control by press-
ing the RESET button. It's on
the back right-hand side of
your kevboard. Then look
for missing or mistyped lines
in your program.

147




148

An Electronic Card Catalog

Assume you need to change the program so it can also store the books’
authors and subjects:

TITLE AUTHOR SUBJECT
Working Studs Terkel Sociology
Cat’s Cradle Kurt Vonnegut Fiction
Small Is Beautiful E. F. Schumacher Economics
Steppenwolf Hermann Hesse Fiction

Start by changing the ““output” part of the program (the first half). Type
these lines:

26 INPUT "AUTHOR"S A%

28 INPUT "SUBJECT: S$%

28 IF A% = "MX" OR 8% = "MX" THEN 3¢
3@ PRINT #-1, TH, A%, 5%

Then change the “input’” part of the program. Type these lines:

90 INPUT #-1, B$, A%, 5%
180 PRINT "TITLE :" B$%

182  PRINT "AUTHOR :" A%
104 PRINT “"SUBJECT :" 5%

Now take advantage of this organization. For example, have the program
print a book list on any given subject. Add these lines:

13¢ CLS

149 INPUT "WHICH SUBJECT": C%

15@  PRINT "REWIND THE TAPE - PRESS PLAY"
16@ INPUT "PRESS <ENTER> WHEN READY": E%$
17¢ CLS: PRINT L% " BOODKS" : PRINT
~188 O0OPEN "I", #-1, "BOORKS"

18@ IF EOF (-1) THEN 230

L2908 INPUT #-1, B%s A%, 5%

21¢ IF 8% = C$ THEN PRINT B%, A%

220 GOTO 190

239 CLOSE #-1

Run the input part of the program by typing RUN 130 ENTER). If you choose
“fiction,” this happens:

WHICH SUBJECT® FICTION
REWIND THE TAPE - PRESS FPLAY
PRESES <ENTER> WHEN READY

FICTION BOOKS:

CAT'S CRADLE KURT UONNEGUT
STEPPENWOLF HERMANN HESSE



DO-IT-YOURSELF PROGRAM 25-1

Assume you have these checks:

NO. DATE PAYABLE TO ACCOUNT
101 513 Safeway food

102 5/13 Amoco car

103 5/14 Joe’s Cafe food

104 5/17 American Airlines  vacation
105 5/19 Holiday Inn vacation

AMOUNT

$52.60
32.70
10.32
97.50
72.30

Write a program that outputs all the checks to tape. Then have it input
them from tape so that you can type one account—such as food—and
the computer will tell you the total amount you’ve spent on food.

See ““Sample Programs’’ in the Appendix for examples of how to store data

on tape.
Learned in Chapter 25
BASIC WORDS BASIC COMCEPT
OPEN data files
CLOSE
PRINT #-1
INPUT #-1
EOF
Notes

149



CHAPTER 26

‘MANAGING NUMBERS

Have you tried to write programs to handle much information? If so,
you'll be glad to know Color BASIC has an easy-to-manage way to keep
track of information.

Assume, for example, you want to write a program that lets you manage
this information:

ELECTION RESULTS

District Votes for Candidate A

1 143

215
3 125
4 331
5 442
6 324
7 213
8 115
9 318
10 314
11 223
12 152
13 314
14 92

Up to now, you’ve used variables to store information in memory. For
example, to store the votes of the first three districts, type:

A = 143 (ENTER
B = 215 (ENTER
C = 125 (ENTER
But there’s a better kind of variable you can use. Type:
A(1) = 143 (ENTER
A(2) = 215 (ENTER
A(3) = 125 (ENTER

Each of the above variables has a “subscript’—(1), (2), and (3). Other
than how they use the subscript, these variables work the same as any
other variables. To see for yourself, type both of these lines:

150



PRINT A5 B3 C (ENTER
PRINT A(1)35 AC2)3 A(3) (ENTER

Now take a quick look and compare the two programs below. Both work
the same: Program 1 uses “’simple variables’’; Program 2 uses ’subscripted

variables.”

PROGRAM 1

19
20
30
49
o0
60
.70
75
89
99
109
112
129
130
149
150
160
170
180
192
200
219

220

DATA 143+ 215, 125+ 331 442
DATA 324, 213+ 115+ 318, 314
DATA 223 152+ 314, 92

READ Ay B»C» Dy E

READF» G+ Hs I+ J

READ K L+ M+ N

INPUT "DISTRICT NO, (1-14)"}%
IF Z2>14 THEN 7@

IF Z=1 THEN PRINT A "YOTES"
IF Z=2 THEN PRINT B "YOTES"

-

IF Z=3 THEN PRINT C "VOTES"
IF Z2=4 THEN PRINT D "VOTESB"
IF Z2=5 THEN PRINT E "VOTESB"
IF Z=6 THEN PRINT F "UOTES"
IF Z=7 THEN PRINT G "UOTES"
IF Z=8 THEN PRINT H "UOTES"
IF Z2=9 THEN PRINT I "VOTES"
IF 2=19 THEN PRINT J "VOTEB"
IF Z=11 THEN PRINT K "VOTES"
IF Z=12 THEN PRINT L "VOTES"
IF 2=13 THEN PRINT M "UOTES"

IF Z=14 THEN PRINT N "VOTES
GOTOD 79

PROGRAM 2

10
29
30
49
3/
690
790
- 80
85
99
109

Program 1 is cumbersome to write. Program 2 is short and simple to write.

DATA 143 215, 125, 331+ 442
DATA 324, 213, 115, 318, 314
DATA 223, 132+ 314, 92
DIMACLY)

FOR X =170 14

READ A{X)

NEXT X

INPUT "DISTRICT ND(1-14)"3 2
IFZ > 14 THEN B89

PRINT A(Z) "VOTES"

GOTO 89

Enter and run Program 2. Here’s how it works:

Line 40 reserves space for a list of information—called an "array”

named A—with 14 subscripted items.

Lines 50 and 70 set up a loop to count from 1 to 14. Line 60 reads all

14 votes into Array A:

]

Actually, this leaves room
for 15 subscripted items
when you count 0 as a sub-
script.

=

151




YOUR COMPUTER ‘8 MEMORY

AlCl) —— 143 A(B) ——115
AC2) — 215 A(Y) —318
A(3) — 125 AC1Q) ——314
Al4) —— 331 Alll) ——223

A(S) — 447 A(L12) — 1572
CCD A(B) — 324 A(13) —314
o A(7) — 213 AC1d) ——97

Line 80 asks you to input a subscript, and Line 90 prints the item you

requested.
Now that you've stored information in an array, it's easy to manage it. For
The name of the array is A. instance, you can add these lines, which let you change the information:
~The X or Z in parentheses
refers to the subscript of one 92 INPUT "DO YOU WANT TO ADD TO THIS"; R%
of the items. 94 IF R$ = "NO" THEN 8@
! -L._—jv 96 INPUT "HOW MANY MORE YOTES"§ X
97 A(Z) = A(Z) + ¥
98 PRINT "TOTAL VOTES FOR DISTRICT" 7 *IS
You don't need to study NOW" A(Z)
these programs if you're an- .
xious to move on. We're just Or you can add these lines to display the information:
showing some benefits of us-
ing subscripted variables. 72 INPUT "DO YOU WANT TO SEE ALL THE TOTALS" ;
5%

74 IF 8% = "YES" THEN GOSUB 110
189 GOTO 72

116 PRINT "DISTRICT", "YOTES"
12¢ FORX=1T7014

130 PRINT X» ACK)

148  NEXT X

130 RETURN

A Second Array

Assume you also want to keep track of a second candidate’s votes—

Candidate B:
ELECTION RESULTS
District Votes for Votes for
Candidate A Candidate B
1 143 678
2 215 514
3 125 430
4 331 475
5 442 302
6 324 520
7 213 613
8 115 694
9 318 420
10 314 518
11 223 370
12 152 412
13 314 460
14 92 502

152



To do this, add another array to the program. Call it Array B. The following
program records the votes for Candidate A (Array A) and Candidate B
(Array B}):

10 DATA 143, 215, 125, 331, 442
20 DATA 324,213, 114, 318, 314
30 DATA 223, 152, 314, 92
40 DATAB78, 514, 430, 475, 302
50 DATAS20,613, 694, 420, 518
G0 DATA 370,412, 460, 502
20 DIMACLA) » BCLA)
80 FORX=1TO 14
90 READ A(X)

100 NEXT X
110 FORX =170 14

120  READ B(X)

130 NEXT X
149 INPUT "DISTRICT NO."; Z

145 1IF Z > 14 THEN 140

15¢ INPUT "CANDIDATE A ORB"; R$
160 IF R$ = "A" THEN PRINT A(Z)
170 IF R$ = "B" THEN PRINT B(Z)
180 GOTO 140

DO-IT-YOURSELF PROGRAM 26-1

Write an inventory program that keeps track of 12 items (numbered
1-12) and the quantity you have of each item.

Deal the Cards

To keep track of 52 "“cards,”” you need to use an array. Erase your program
and type and run this one:

49 FOR X =170 52
5@ C=RND(32)
90 PRINTCS

100  NEXT X
) You don’t need a DIM line if
The computer deals 52 random “cards,” but if you look closely, you see none of your array items use

that some of the cards are the same. a label higher than 10.
However, it’s still a good
To make sure the computer deals each card only once, you can build idea to put this line in your

another array—Array T—that keeps track of each card dealt. Add these | Prosram (o reserve just the
lines: right amount of memory.

5 DIMT(3Z) < )
19 FORX=1T0S32

20 T(X) =X
30 NEXT X

The above lines build Array T and put all 52 cards in it: T(1) = 1, T(2) = 2,
T3) = 3...T(2) = 52.

Then add some lines that ““erase’ each card in Array T after it’s dealt. Type:

Be IFT(C) =@ THEN 590
8o T(C) =29

153



154

Now the computer can’t deal the same random card twice. For example,
assume the computer first deals a two. Line 80 changes T(2)’s value from 2
to 0.

Then assume the computer deals another two. Since T(2) now equals 0,
Line 60 goes back to Line 50 to deal another card.

Run the program. Note how the computer slows down at the end of the
deck. It must try many different cards before it finds one that it hasn’t dealt

yet.

To play a card game, you need to keep track of which cards have been
dealt. You can do this by building another array—Array D. Add these lines,
which store all the cards, in the order they are dealt, in Array D:

7 DIMD(32)
79 DOX) = T(L)
80 PRINTD(X)3

DO-IT-YOURSELF PROGRAM 26-2

Add lines to the program so that it displays only your “’hand’”’—the first
5 cards dealt.

Learned in Chapter 26
BASIC WORD BASIC CONCEPT
DIM arrays

Notes




CHAPTER 27

MANAGING WORDS

In the last chapter, you used arrays to manage numbers. Here, you'll use
arrays to manage words by editing, updating, and printing an entire essay.

Start with a simple list of words: a shopping list:

1. EGGS 7. TOMATOELS
2. BACON 8. BREAD

3. POTATOES 9. MILK

4. SALT 10. CHEESE

5. SUGAR 11. FISH

6. LETTUCE 12. JUICE

The dollar sign’s the only dif-
ference between these sub-
. . . . . scripted variables and the
Assign each word to a subscripted variable—this time use a subscripted ones in the last chapter.

string variable. For example, for the first three items, type:

S$(1) = "EGGS" (ENTER { }
S54(2) = "BACON" (ENTER
S$(3) = “"POTATOES" (ENTER

To see how the items are stored, type:
PRINT S%(1) 58(2) 5%(3) (ENTER

Now build a program that reads these words into an array named S$ and
then displays them:

3 DIM 8%(12)

1¢ DATA EGGS. BACON: POTATOES» SALT
2¢ DATA SUGARs LETTUCE. TOMATODES, BREAD
39 DATA MILK, CHEESE, FISH, JUICE
4@ FOR ¥ = 1 TO 12

30 READ S5%(X)

B8  NEXT X

7% PRINT “SHOPPING LIST:"

8@ FOR X = 1 70 12

g8 PRINT Xi 8%0X)

189 NEXT X

155



DO-IT-YOURSELF PROGRAM 27-1

Add some lines to the above program so that you can change any item
on this list.

DO-IT YOURSELF PROGRAM 27-2
Here is a program that uses an array to write song lyrics.

3 DIM As(dy
1¢ PRINT “TYPE 4 LINESG"®

Want to compose music? 20 FOR ¥ = 1 TO 4
Look up “"Music Composer” 3@  INPUT A$ ()
in the "“Sample Programs” 49 NEXT ¥
appendix. 5@ CLS
BE@ PRINT “THIS I5 YOUR SONG:™
7¢  PRINT
8¢ FOR X =1 TO 4
8¢ PRINT

AP " "5 As )
100 NEXT X

Add some lines so that you can revise any line.

Haven't heard of word pro-

cessing? It's a kind of pro- ..o

gram that lets you type and ertlng an Essay

store information, make

changes to it, and print it out (. o A NOVEI, Term Paper e s .)

on demand.
Now that you've learned how to use string arrays, it will be easy to write a
program that stores and edits what you type. Type this program:

i CLEAR 12920
3 DIM As(59)

:&ﬁiggﬂﬁmgfmeg 19 PRINT "TYPE A PARAGRAPH"
this: is in Chapter [ il PAVAS u
andINKEY$iSinChaDZrH. ag )f:RiNI PRESS </> WHEN FINISHED
) l t::j 4¢ A% = INKEY$

30 IF A% = "% THEN 49

B¢ PRINT A%

7@ IF A% = /" THEN 110

B2 A0 = As(X)Y + A%

90 IF A% = "," THEN X = ¥ + 1

1e@ GOTO 4o

1180 CLS

12@¢  PRINT “YOUR PARAGRAPH:®

138 PRINT

1d¢ FOR ¥ = 1 TO ¥
13@ PRINT A$(Y);
1B® NEXT Y

Run the program. To see how each sentence is stored, type these lines:

FRINT A%$(1) (ENTER
PRINT A%$(2) (ENTER
PRINT A$(3) (ENTER

Here's how the program works:

Line 1 clears plenty of string space.

156



Line 5 saves room for an array named A$ that may have up to 50
sentences.

Line 30 makes X equal to 1. X will be used to label all the sentences.

Line 40 checks to see which key you are pressing. If it is nothing (" "),
Line 50 sends the computer back to Line 40.

Line 60 prints the key you pressed.

Line 70 sends the computer to the lines that print your paragraph when
you press the "/ key.

Line 80 builds a string and labels it with number X. X is equal to 1 un-
til you press a period (.). Then Line 80 makes X equal to X + 1.

For example, if the first letter you press is "R;’
A$(1) EQUALS "R".
If the second letter you press is O,

A$(1) EQUALS A$(1) - WHICH IS "R + "O"
OR
“RO™.

Assume that when A$(1) equals ROSES ARE RED, you press a period.
A$(1) then equals the entire sentence: ROSES ARE RED. The next letter

you press is in A$(2).

Lines 140 — 160 print your paragraph.

DO-IT-YOURSELF CHALLENGER PROGRAM 27-3

Here's a tough one (but it can be done!) for those intrigued with word
processing. Change the above program so that you can:

1. Print any sentence
2. Revise any sentence

You may need to review the challenger program in Chapter 12. Our
answer’s in the back.

Using the Printer

If you have a printer, connect it now by plugging it into the jack marked
SERIAL YO. Turn on the printer and insert paper. The manual that comes
with the printer shows how.
Ready? Type this short program:

1¢  INPUT A%

¢ PRINT # - 2 A%
Now type:

LLIST (ENIER

If your program doesn’t list on the printer, be sure the printer is on,
“on-line,” and connected to your keyboard. Then type LLIST (ENTER

again.



Having trouble getting into
this mode? Read the end of
Chapter 1.

15
—

All the letters in RUN should
appear in regular {(not re-
versed) colors.

If you have a Deluxe Color
Computer, you can get true
lower-case letters (rather
than reversed letters) to ap-
pear on your screen. See
Introducing Your Deluxe
Color Computer.

158

Run the program and watch the printer work. PRINT # - 2, tells the
computer to print, not on the screen, but on device # - 2, which is the
printer. Be sure to type a comma after the -2, or you get a syntax error.

Press the and (0) (zero) keys simultaneously and release them so
that the letters you type appear in reversed colors on your screen (green
with a black background). You are now in an upper- lowercase mode. The
reversed colored letters are actually lowercase {noncapitalized) letters,

To type a capital letter, use the SHIFT) key as you do with a typewriter. It
appears in regular colors.

Run the program, using the SHIFT) key so that the word RUN is capital-
ized. Input a sentence with both upper- and lowercase letters. Type:

MY PRINTER PRINTS LOWERCASE LETTERS (ENTER

DO-IT-YOURSELF PROGRAM 27-4

Look at the “Writing an Essay’”” program earlier in this chapter. Change
Lines 140-160 so that the paragraph prints on the printer rather than

the screen.
Learned in Chapter 27
BASIC WORDS BASIC CONCEPT
LLIST string arrays
PRINT # - 2
Notes




CHAPTER 28

 SORTING

Any file clerk knows it’s easier to find information that's sorted alphabeti-
cally. Type this program and run it, until you're convinced the computer
can alphabetize:

i¢
29
30
4@

5@

INPUT "TYPE TWO WORDS" i A% B%

IF A% < B$ THEN PRINT A% " COMES BEFORE " B%
IF A% > B$ THEN PRINT A$ " COMES AFTER " B%
IF A% = B% THEN PRINT "BOTH WORDS ARE THE
SAME"

GoTO 1@

[

With strings, the greater than (>), less than (<), and equal (=) signs have a

o % " A
@:@ =¥ = 57
: L —
=] A
) — .
B = |
S et =

new meaning. They tell which of two strings comes before the other in
alphabetical sequence:

il

IV VAA

Since the computer can alphabetize, it's easy to write a sorting program.

precedes alphabetically

precedes or is the same alphabetically
follows alphabetically

follows or is the same alphabetically
is the same

Type and run this program, which sorts 5 words:

19
20
3@
49
S0
Ge
78
8¢
a9¢
10¢
112
129
130
ide

DIMA%(SE)
FORI=1T05
INPUT "TYPE A WORD" 1 AS(1)
NEXT I
X=0
K=K+ 1
IF ¥ » 3 THEN GOTO 7@
IF A% (X ="Z2" THEN B@
FORY =17T0°5
IF A%(Y) < A M) THEN X = Y
NEXT Y
PRINT A% (X
A% (X)y="ZZ"
GOTO 3¢

You can easily make the
computer alphabetize more
words by changing the 5 to
say, 100, in Lines 10, 20, 70,
and 90.

159



160

To see how the program works, delete Line 120 and add the following
lines. (These lines only show what the program does—they have nothing to
do with sorting.)

120

3 CLS

45 CLS

85 VU=U4+1

1805 PRINT @ 15+432%(U-1) 4 A%$(X)

135 GOSUB 500

300 FORI=1T0S

510 PRINT @ 0+32%(I-1) A%(I) 5" "3
320 NEXTI

330 RETURN

Run the program. Too fast? Type this line. It slows down the program so

you can see what’s happening:
187 FORT=1TOGOO: NEXTT

Now run the program again. Input these words and watch carefully:

MICHAEL
TRAVIS
DYLAN
ALEXIA
SUSAN

Look at Column 2. See how the first name changes from Michael to Dylan
to Alexia. Next, notice what happens to Alexia in the first column. Alexia

becomes ZZ.

This illustrates how the program sorts the first and second words:

FIRST WORD

MICHAEL MICHAEL
TRAVIS TRAVIS
DYLAN DYLAN
ALEXIA ALEXIA ALEXIA
SUSAN SUSAN SUSAN
MICHAEL MICHAEL MICHAEL ALEXIA
TRAVIS TRAVIS TRAVIS
DYLAN DYLAN DYLAN

ALEXIA ZZ
SUSAN SUSAN

SECOND WORD
ALEXIA MICHAEL ALEXIA MICHAEL ALEXIA

TRAVIS TRAVIS
DYLAN DYLAN
ZZ Z2 2L
SUSAN SUSAN SUSAN
MICHAEL ALEXIA MICHAEL ALEXIA MICHAFL ALEXIA
TRAVIS TRAVIS TRAVIS DYLAN
DYLAN DYLAN ZZ
SUSAN SUSAN



Here’s how the program works:
Lines 50 and 60 set X’s value. At the start, X is 1.

Then Lines 90-110 compare A$(X)—Michael—with every other name in
Array A$ until a word is reached that precedes Michael—Dylan.

Line 100 then makes A$(X) equal to Dylan’s place in the array: A$(3).
When Dylan is compared with the fourth word—Alexia—A$(X) becomes
A$4).

When all the words have been compared with one another, Line 120
displays the first sorted word: Alexia. Line 130 changes Alexia’s position—
A$(4)—to ZZ.

At this point, Lines 50 and 60 make X equal 1 again. A$(X)—Michael—is
compared with other names in the array to find the second sorted word.

When Michael’s place in the array becomes ZZ, Line 60 sets X to 2. Then,
A$(X)—which is now Travis—is compared with all the names in the array
to find the next sorted word.

When the array’s values are all changed to ZZ, Line 70 ends the program.

DO-{T-YOURSELF PROGRAM 28-1

Using this sort routine, change the program from the last chapter so
that it alphabetizes your books by title, author, or subject.

This chapter shows a simple way to sort. If you need to sort many items,
you may want to research faster sorting methods (such as the bubble sort).

Learned in Chapter 28
BASIC SYMBOLS

AV

Notes

161



We're only using three dis-
tricts to keep it simple.

We're calling them Candi-
dates 1 and 2 this time rather
than Candidates A and B.

162

-

CHAPTER 29
ANALYZING

If you have more than 4K RAM, you have an easy way to analyze informa-
tion. By giving each item more than one subscript, you can see it through
different dimensions.

Take the voting program from Chapter 19. Here's the information. (We're
using only the first three districts to make the program simple.)

ELECTION POLL

District Votes for Votes for
Candidate 1 Candidate 2
1 143 678
2 215 514
3 125 430

In Chapter 19, you stored the above ““items’’ (groups of votes) in two
one-dimensional arrays: Arrays A and B. In this chapter, you'll store them
in one easy-to-manage two-dimensional array: Array V.

The following program puts the items in Array V.
3 DIM U(3,:2)

12 DATA 143, B78s 215, 514, 125, 430
<20 FOR D = 1 TO 3
*3@ FOR C =1 T0O 2
¢ 40 READ ¥(D,C)
- 50 NEXT C
6@ NEXT D
7@ INPUT "DISTRICT NO. (1-3)"3 D
B@ IF D < 1 ORD > 3 THEN 70
9@ INPUT "CANDIDATE NO., (1-2)": ¢
190 IF C < ¢ OR C <2 THEN S0
118  PRINT V(D)
120 GOTO 70



Type and run the program. Notice that each item is labeled by two
subscripts.

Here’s how the program works:

Line 5 reserves space in memory for Array V. Each item in Array V can have
two subscripts: the first, no higher than 3; the second, no higher than 2.

Lines 20-60 read all the votes into Array V, giving them each two
subscripts:

The first subscript is the district (Districts 1-3).

The second subscript is the candidate (Candidates 1-2).

YDUQCOﬂPUTER’éNEMDRY
(110143 Yil.,2)—G678

UiZ,31)—213 U(2,2)—3514

{31 )—123 U(3,2)—=430

Forexample, 678 is labeled V(1,2). This means 678 is from District 1 and is
for Candidate 2.

With all the votes in a two-dimensional array, it's simple to analyze
them—in two dimensions. By adding these lines, for example, you can
print all the votes in two ways: by district and by candidate.

(Delete Lines 70-120 first)

79 INPUT “TY¥PE < 1 » FOR DISTRICT OR
. 2 » FOR CANDIDATE"s R

g IF R 1 OR R > 2 THEN 78

tep  ON R GDSUB 1000, 2000

1i¢  GOTO 79

108@  INPUT YDISTRICT NOC1I-3)"3F D

igie¢ IF D {1 OR O > 3 THEN 1000

1818 CLS

1629 PRINT @ 132, "UOTES FROM DISTRICT" D
1438 PRINT

igd9 FOR C = 1 70 2

1958 PRINT "CANDIDATE® O

18B&  PRINT V(D0)

1878 NEXT C

188% RETURN

ZP@d  INPUT "CANDIDATE NOCL-2)"5 €

218 IF C 1 OrR C 2 THEN Z@o9

2013 CLE

2020  PRINT @ 132, “YOTES FOR CANDIDATE" C
2034 PRINT

2049 FOR D = 1 7O 3

2950  PRINT "DISTRICT™ D
2269 PRINT W(D.0)

2970 NEXT D

2088 RETURN

Remember how to delete
lines? 70 Deletes
Line 70.

163



if you are truly an analytical

The Third Dimension
type, you're going to love

the rest of this chapter. If You can continue with as many dimensions as you want. You're limited

you?ekdefinitel\/ NOT that only by how much information you can fit into the computer’s memory.
type, skip it!

L=

Add a third dimension to Array V: interest groups. Here's the information:

VOTES FROM INTEREST GROUP 1

Candidate 1 Candidate 2
District 1 143 678
District 2 215 514
District 3 125 430
VOTES FROM INTEREST GROUP 2
Candidate 1 Candidate 2
District 1 525 54
District 2 318 157
District 3 254 200
VOTES FROM INTEREST GROUP 3
Candidate- 1 Candidate 2
District 1 400 119
District 2 124 300
District 3 75 419

To get all this into your computer’s memory, erase your program and type:
S ODIM Y{(3,:3:2)

1@ DATA 143, B78, 215, 514, 125, 430
20 DATA 525, 54, 318, 157, 254, 200
30 DATA 400, 119, 124, 300, 75, 419
~40 FOR G = 1 TO 3

@ FOR D =1 70 3

Be FOR C = 1 TO 2

78  READ W(G,D:C)

89 NEXT C

=88 NEXT D

110 INPUT "INTEREST GROUP NO (1-3)"3§ ¢
120 IF G < 1 OR G » 3 THEN 110
130 INPUT “"DISTRICT NO, (1-3)35 D
146 IF D < 1 DR D » 3 THEN 130
130 INPUT “CANDIDTE NO. (1-2)"3§ C
160 IF C < 1 OR C » 2 THEN 15¢
17¢ PRINT Y(G,D,C)

18¢ GOTO 1ie

Run the program and test the subscripts. Lines 40-100 read all the votes
into Array V, giving them each three subscripts:

The first subscript is the interest group (Interest Groups 1-3).
The second subscript is the district (Districts 1-3).
The third subscript is the candidate (Candidates 1-2).

164



For example, 678 is now labeled V(1,1,2). This means 678 is from Interest

W(ls1,10—143 U(l:1.,2)—678
(1421 )—213 UW(1:2,2)—314
V(14310143 V(1 :3,2)—430
U(Z24+141)>5825 W{2+1:2)—=354

WiZ,2,1)—318 U(Z242,2)—157
Y23 ,1)—254 VI2:3:2)—=200
V{311 )—400 V(312118
U{3:2,1)—>124 V(3432 ,2)>300
V(3341075 U(3+3:2)—418

YOUR COMPUTER ‘8 MEMORY

Group 1, is from District T, and is for Candidate 2.

To take advantage of all three dimensions, delete Lines 110-180 and type:

110
i2¢

PRINT: PRINT "TYPE <1 FOR GROUP"
PRINT "+<Z» FOR DISTRICT OR <3: FOR
CANDIDATE"

P o= 224 ¢ INPUT R

ON R GDSUB 1900 .2000.3000

GOTO 119

INPUT "GROUP(1-33"3 G
IF G<1 OR G:»3 THEN 1000

CLs

PRINT 8 1@2, "VOTES FROM GROUP" G
PRINT @ 1688, "CAND., 1"
PRINT @ 176, “"CAND. 2"

FOR D = 1 TO 3

PRINT & P, "DIST." D

FOrR C = 1t 7O 2

PRINT @ P + 8%C., VW(GHDH0) 3
MNEXT C

p = P + 32

NEXT D

RETURN

INPUT "DISTRICT(1-3)"35 D
IF D<i OR D»3 THEN 2000

CLS

PRINT @ 1¢2, "VOTES FROM DIST." D
PRINT @ 188, "CAND. 1"
PRINT @ 178, "CAND. Z"
FOR G = 1 7O 3

PRINT @ P» "GROUP" G

FOR C = 1 TO 2

PRINT 8 P + 8%C,U(GD,0)53
NEXT €

P = P + 32

MEXT G

RETURN

INPUT “"CANDIDATE(1-23"3% C
IF C<1 OR C»2 THEN 3000

165



3020 CLS

3030 PRINT @ 102, "UDTES FOR CAND." C
304¢ PRINT @ 168, "DIST., 1"

3039 PRINT @ 176, "DIST. 2°

3062 PRINT @ 184, “DIST, av

3907¢ FOR G = 1 TO 3

308¢ PRINT B P, "GROUP" G

308¢ FOR D = 1 TO 3

3102 PRINT @ P + 8#%D, Y(G,D,C) 3

311@¢ NEXT D
312¢ P = P + 32
3138 NEXT G
314¢ RETURN

Run the program. You can now get three perspectives on the information.

DO-IT-YOURSELF PROGRAM 29-1

Write a program to deal the cards using a two-dimensional array.
Make the first dimension the card’s suit (1-4) and the second dimen-
sion the card’s value (1-13).

Learned in Chapter 29
BASIC CONCEPT

Multidimensiona! arrays

Notes

166









SECTION IV

BACK TO BASICS

This section sends you back to school. You’ll learn some new Extended
Color BASIC words that will help you refine and polish your programs.

169






CHAPTER 30
_ THE NUMBERS GAME

Your “extended’’ Color Computer includes several advanced mathematical
functions. This chapter gives a rundown of each function and shows the
ways to use it.

Before continuing, however, you need to know about a couple of functions
and definitions discussed below.

Exponentiation
Quick! What's 1.5 squared? How about 77 cubed? If you don’t know, ask

the computer. Anytime you want to raise a number to the nth power, follow
this format:

number (1) power
number is the base (the number you wish to raise to the nth
power). It may be any numeric expression.

up-arrow is generated by pressing (3.

power is the exponent to which the base is raised. It may be any nu-

meric expression.

Note: Exponentiation has precedence over other operators. For exam-

ple, if the computer calculates — 2 up-arrow 2, the result is a negative

number. To raise — 2 to the 2d power “correctly” {resulting in positive

number), enclose — 2 in parentheses

Start with 77 cubed. After looking at the syntax block, can you give the

command? Your answer should be 456533.002. Don’t worry about the
‘. . . , : I 7.002." This is called a
If your screen looks like this, you're off to a good start: round-off error” and is
BRINT 77 * 9 necessary because the
computer isn’t the "per-
ﬁ§5533 JEB2 fect” calculator. But then,

0K no machine is.

Try raising 10 to the 10th power. The screen displays:
1.,.00000021E+10

171



Sinc'e 10,000,000,000 has more than 9 significant digits, the computer
went into the E notation explained in Chapter 13.

How about 100 to the 100th power? Does the screen display an 20V ER-
ROR (overflow)? This means that the answer is too large for the computer
to handle. Anything outside the range — 10°% to + 10 causes an overflow
error.

DO-IT-YOURSELF PROGRAM 30-1

Write a short program that displays the square of each whole number
rom 1to10.

SQR

SQR enables you to find the square root of a number. Here is its syntax:

SQR (humber)

number is zero or any positive number.

For example, if you want the square root of 100, type:
PRINT SQR(100) (ENTER

and you'll find out (if you didn't already know) that the answer is 10,

DO-IT-YOURSELF PROGRAM 30-2

Write another short program to display the square root of every tenth
number from 100 to 0.

TRIG Functions

Trigonometry is the investi- Look at this triangle. You'll be using it throughout the discussion of trigon-
gation of the relationship ometric functions.
of a triangle’s sides to its
angles. AB
SC
SA
AA “d AC
sB

Trigonometry has many practical applications. For instance, imagine that
your triangle is actually the roof of a house vou're building. Trigonometric
‘functions can help you determine either the length of the rafters or the slope
of the roof (the “'pitch”}). So if math turns you off but building things turns
you on, this section might be just what you're looking for.

Notice that we've labeled angles with the prefix A and sides with the prefix
S. Angle A, for example, is AA; the side opposite it is SA.



Using the triangle, we can define the common trig functions in the follow-
ing manner:

Sine of AA = SIN (AA) = SA/SC
Cosine of AA = COS (AA) = SB/SC
Tangent of AA = TAN (AA) = SA/SB

Degrees v Radians

To define an angle, you may use either of two units of measurement. The
more common unit is the degree; the "‘more technical” unit is the radian.

Your computer assumes all angles are measured in radians. Since radians
may be somewhat alien to you, you can convert them to degrees {and vice
versa) this way:

Degrees to Radians: Degrees / 57.29577951

Radians to Degrees: Radians * 57.29577951

This chapter’s sample programs include a “‘converter’” that takes the de-
grees you input and automatically converts them into radians (and vice
versa for some purposes).

SIN

That's sine—pronounced like “'sign.”

Its syntax is:

SIN (angle)
angle is angle’s size in radians.

Given the length of one side and the sizes of two angles, you can use SIN
to determine the lengths of the other sides.

Enter and run the following program, inputting any values.

5 CLS

1@ INPUT "WHAT IS ANGLE A (ARAI": AR:
IF AfA<=0 OR AA:=1B¢ THEN 1890

2@ INPUT "WHAT IS5 ANGLE B (AB)"3i AD:

IF AA <=9 0OR AB »=18@¢ THEN 104 In the Sample Program

a9 INPUT "WHAT IS5 SIDE C (8C)»"§ &C: SDeCtIOQI;aTF{fOEF?m C?’LGC:

. rawing Triangles. Tha

IF 8C <=0 THEN 100 program draws triangles

40 A0 = 180-(AA+AB)Y 'YALUE OF ANGLE AC based upon sides and an-
53 IF {(AA+AB+AC) < > 18@ THEN 109 gles that you specify.

‘TRIANGLE=188 DEGREES

B9 AA=AA/ST,29577951: AB=AB/57.28377851:
AC=AC/87,29577951
 CONVERT DEGREES TO RADIANS

7@ BA={(SIN(AAYI/{BINIAL) ) # 5C: IF SRS
THEN 10@

80 SB=({(SIN(AB))/(SINCAC))) # BC: IF 5B<0
THEN 100

8¢ PRINT "SIDE A (BA) I8" SA "LONG":
PRINT "SIDE B(SB) I&G"
5B "LONG": GOTO 12

1¢@ PRINT "SORRY s NOGT A TRIANGLE.
TRY AGAIN": GOTO 10

173



When the computer asks you for AB and AC, input degree-measures of the
angles. If you enter a negative number or a number that is greater than or
equal to 180, the computer goes to Line 100. It then prints the message and
again asks for the sizes. If you enter a negative number for SC, it does the
same thing.

Since you don’t know the size of AC, the computer automatically computes
this in Line 40. If the sum of the three angles is not equal to 180 degrees,
the computer takes appropriate action in Line 50. Line 60 converts degrees
to radians so the computer can do the sine calculations.

Sine Waves

You may have seen sine waves before. They're used to indicate AC power
and other electrical conditions. Run the following program to see a “hori-
zontal scrolling” sine wave (and check the Sample Program section for a
more conventional sine wave).

3 CLS
19 FOR A = 180 T0 -179 STEP-18
20 RD = A / B7,28577951 ‘RADIANS
33 CL = SBIN(RD) # 14 + {B.5
‘Ch = COLUMN POSITION
49 PRINT TAB(CL)Yj"g" TPLOT SINE OF RD
3@ NEXT A
62 GOTO Ge

Cos

The cosine function is related to the sine function and has the following
syntax:

COS (angle)
angle is angle’s size in radians.

Given the lengths of two sides and the size of one angle, you can use cosine
to determine the length of a triangle’s third side, as shown here:

5 CLS
10 INPUT "WHAT IS ANGLE € (AC)": AC:
IF AC<=0 OR AC>=18¢ THEN 108
20 AC=AC / 57.,29577951
‘CONVERT DEGREES TD RADIANS
30 INPUT "WHAT IS SIDE A (SA)": SA:
IF S5A<=0 THEN 100
49 INPUT “WHAT IS SIDE B (SB)": SB:
IF SB=<@ THEN 100
50 SC = ((8A 4 2)+(88 } 2))-(2%(5p#5B
COS(AC)Y)): IF SC<@ THEN 108
B¢ PRINT "SIDE € (5C) IS8" SOR(SC) "LONG®:
GOTO 19
106 PRINT “SORRY, NOT A TRIANGLE.
TRY AGAIN": GOTO 10

Notice that the program works almost the same as the SIN program except
for the use of exponentiation (up-arrow) in Line 50 and SQR in Line 60.



DO-IT-YOURSELF PROGRAM 30-3

Cosine can make waves of its own. Rewrite the "’Sine Wave’’ program
so that it plots COS(RD) instead of SIN(RD). Use C (for cosine) to display
the wave made by COS. What is the difference between the two?

TAN

The third trigonometric function, TAN, lets you calculate the tangent of an
angle. Here is its syntax:

TAN (angle)
angle is angle’s size in radians.

You can use TAN to determine, among other things, one side of a triangle,
given another side and one angle.

Enter and run this program:

3 CLS

12 INPUT "WHAT IS SIDE B (8B)"3i G5B:
IF 8B<=0 THEN 100

29 INPUT "WHAT IS ANGLE A (AAY™3 AA:
IF AA<=0 OR AA>=180 THEN 100

3@ AA=AA/37.,29377851 ‘CONVERT DEGREES
TO RADIANS

49 SA=SB*(TAN(AA)): IF SA<=0 THEN 109

590 PRINT "SIDE A (8A) IS8" S5A "LONG":
GOTO 1@

18¢ PRINT "SORRY ., NOT A TRIANGLE.
TRY AGAIN": GOTO 10

The key to this program, of course, is Line 40, where the tangent of AA is
multiplied by the length of SB to determine the length of SA.

ATN
ATN (arctangent) is the inverse of TAN and has the following syntax:

ATN (angle)
angle is angle’s size in radians.

The following program uses ATN and TAN to calculate two unknown angles
of a triangle when two sides and one angle are known.

1¢ CLS

20 INPUT "WHAT IS SIDE A (5A)"3i BA:
IF SA<=0 THEN 130

30 INPUT "WHAT IS SIDE-C (8C)"i 5C:
IF 8C<=0 THEN 1350

49 INPUT "WHAT IS ANGLE B (AB)"3 AB:
IF AB<=9¢ OR AB>=188 THEN 15¢

5@ X=(1B0-AB) "AA+AC=1B0-AB

B@ K=X/57.,28377951 ‘CONVERT DEGREES
TO RADIANS

70 Y=((5A-5C)/(SA+8C)I*TAN(XK/Z)

175



176

80 Z=ATN(Y)

80 AA=(X/2)+(2)

100 AC=(X/2)-(2)

112 AA=AA*37.295377951 "CONVERT
RADIANS TO DEGREES

120 AC=AC*357.,28577851 ‘CONVERT RADIANS
TO DEGREES

138 PRINT "ANGLE A (AA) IS" AA "DEGREES"

149 PRINT "ANGLE C (AC) IS" AC "DEGREES":
GOTO 2@

130 PRINT "SORRY NOT A TRIANGLE,
TRY AGAIN": GOTO 2o

TAN ((AA-AC)/2) is equal to ((SA-SC)/SA + SC)) = TAN ((AA + AC)Y2). Also
notice that it was necessary to convert the “‘computer’s’’ radians to "your”’

degrees (Lines 110 and 120).
LOG

LOG returns the natural logarithm of a number. This is the inverse of EXP
so X=LOG(EXP(X)). Here is LOG's syntax:

LOG (number)
number is greater than zero.

The logarithm of a number is the power to which a given “’base’” must be
raised to result in the number. ““Logs” are useful in scientific and mathe-
matical problems. In the LOG function, if you omit the base, the computer
assumes you are specifying Base e (2.718281828).

To find the logarithm of a number to another base, B, use this formula:
log base B (x) = log e (x) / log e (B)

For example, LOG (32768)/LOG(2) returns the logarithm to Base 2 of
32768. (It returns the power to which 2 is raised to get 32768.)

Try these:

PRINT LOG (1) (ENTER
PRINT LOG (10@) (ENTER
PRINT LOG (2.718281828) ENTER

DO-IT-YOURSELF PROGRAM 30-4
Compute the LOG of each of the following numbers:
a) 1003 b) 74.9865 c) 3.354285

DO-1T-YOURSELF PROGRAM 30-5
Compute the log to Base 10 of each of the following numbers:

a) 1 b) 10 c) 100
d) 500 el 0.1 f) 1001
log e x

Hint: log 10 x =

loge 10




EXP

The EXP function returns the natural exponential of a number (enumber ).
EXP is the inverse of LOG; therefore, X = EXP(LOG(X)). Here is EXP's

syntax:

EXP (number)
number is less than 87.3365.

Run this program to see EXP at work.

1@ CLS

20 INPUT "ENTER X"3 X

3@ PRINT "EXPX)="3 EXAP(X)
40 GOTO Ze

FIX

It's impressive when your computer carries a number out to 9 significant
digits, especially when 8 of those numbers are to the right of the decimal
point.

However, sometimes you might not want all those numbers; you may want
only the whole-number portion (the number to the left of the decimal point).
FIX lets you get this whole number by simply chopping off all digits to the
right of the decimal point. Here is FIX's syntax:

FIX (number)

For example, type:
PRINT FIX (2.26843851) (ENTER

The computer displays:

P

OK
Here’s a program that breaks a number into its whole and fractional
portions.

1e¢ CLS

20 INPUT "A NUMBER LIKE X.YZ"3i X
30 W=FIX(X)

49 F=ABS(X)-ABS (W)

5@ PRINT "WHOLE PART="3 W

B2 PRINT "FRACTIONAL PART="3 F
7¢ GOTO Z@

DEF FN

Extended Color BASIC has one numeric function, DEF FN, that is un-
like any others we've talked about so far. DEF EN lets you create your
own mathematical function. You can use your new function the same
as any of the available functions (SIN, COS, TAN, and so on). Once
you've used DEF FN to define a function, you may put it to work in

When you use this feature,
don't forget to use the DEF
FN statement before you
try to execute the function
it defines. Otherwise a ?UF
FRROR (undefined func-
tion) occurs.

177



178

your program by attaching the prefix FN to the name you assign to the
new function. Here is the syntax for DEF FN:

DEF FN name (variable fist) = formula
name is the name you assign to the function you create.

variable list contains one ““dummy variable’’ for each vari-
able to be used by the function.

formula defines the operation in terms of the variables given
in the variable list

Note: Variable names that appear in formula serve only to define
the formula; they do not affect program variables that have the
same name. You may have only one argument in a formula call;
therefore, DEF FN must contain only one variable.

You may use DEF FN only in a program, not in the immediate
mode.

For example, one math operation you’ve had to use several times in
this chapter is degree-to-radian conversion. Wouldn't it be nice if the
computer did that for you?

If you'll change the sample program we used for SIN, you'll see how
to create a DEF FN that converts degrees to radians.

7 DEF FNR(X)=X/57.28577951
B2 AA=FNR(AA): AB=FNR(AB): AC=FNR(AC)

You can see right away how much typing this saves, since you had to
enter 57.29577951 only once. Whenever FNR is called into use, the
computer automatically inserts whatever values you have used and
performs the prescribed operation.

DO-IT-YOURSELF PROGRAM 30-6
Use DEF FN to:
1. Convert radians to degrees.
2. Create a math function that cubes numbers.

You'll find a quick reference table of many useful mathematical formu-
las (plane geometry, trig, and algebra) in the Appendix.



Learned in Chapter 30

BASIC WORDS

SQR
SIN

COS

TAN

ATN

LOG
EXP
FIX

DEF FN

CONCEPTS

Computing a square root

Computing the sine;

Determining two unknown sides of a trian-
gle, given two angles and a side.
Computing the cosine;

Determining the unknown side of a trian-
gle, given two sides and an angle
Computing the tangent;

Determining the unknown side of a trian-
gle, given one side and an angle
Computing the arctangent;

Determining two unknown angles of a tri-
angle, given two sides and the third angle
Computing the natural logarithm of a
number

Computing the natural exponential of a
number

Rounding a decimal number to a whole
number

Defining a function

Notes

179



180

CHAPTER 31

IT DON'T MEAN A THING
IF IT AIN'T GOT THAT
 STRING

Earlier, we discussed string at great length. Now it's time for informa-
tion about more of Extended Color BASIC’s string functions.

STRING$

Zing goes STRINGS$ . .. and when you use it to create a string of char-
acters, you can produce graphs, tables, and any other text display. The
syntax of STRINGS is as follows:
~, STRINGS$ (fength,character)
length is a number from 0 to 255.
character is either a string expression for a character or a

numeric expression for an ASCIl code. If you use a string
constant, enclose it in quotes.

The number of characters displayed depends on the number you spec-
ify in length. Which characters are used depends on either the charac-
ter or the ASCII code you specify. See the Appendix for a complete list
of ASCH character codes.

For instance, jazz up your overworked “’Lines”” program by changing it
as follows:



CLS
K = STRINGS (13,"%")
PRINT @ 96 X#%$§ "LINEG"§ X
9 FOR X = 1 TO 1000: NEXT X
1@ PMODE 3»1

13 PCLS

20 SCREEN 141

25 LINE (99 -(255:181) +P5EET
30 LINE (0,1891)-(235,0)»PBET
40 GOTO 40

Line 6 assigns X$ the value STRINGS$ (13,"*"")—a string of 13 astefrisks.

Line 7 tells the computer to print {starting at Print Screen Location 96)
X$, then the word LINES, followed by X$ again. (See the Text Screen
Worksheet in the Appendix.) Since X$ equals 13 asterisks (*), those
characters are printed before and after LINES.

~ )

What? You want to spruce up the title even more! All right, add these
two lines:

B ¥Yé = GTRING$(31,42): PRINT @ 3B4,Y$

This time, you tell the computer to display the character represented
by ASCHl Code 42. And, as you probably guessed, ASCIl Code 42 rep-
resents an asterisk.

DO-IT-YOURSELF PROGRAM 31-1

Have you ever written lists to check off jobs that you or other peo-
ple have to do?

Using STRINGS, write a program that creates a check-off list.

| Think 1 See Some-String Ahead!
(INSTR)

If you want to search through one string for a second string, use
INSTR.

INSTR's syntax is:

INSTR (position,search-string,target)

position specifies the position in the search-string at which
the search is to begin (0 to 255). If you omit position, the
computer automatically begins at the first character.

search-string is the string to be searched.

target is the string for which to search.

INSTR returns a O if any of the following is true:

The position is greater than the number of characters in the
search-string.

The search-string is null.

It cannot find the target.

Watch the way INSTR works in the following program:

181



182

3 CLEAR 5S¢0

1¢ CLS

13 INPUT "SEARCH TEXT"i5%

26 INPUT "TARGET TEXT"iT$

23 C=0: P=1 ‘P = POSITION

32 F = INSTR(P:5%,7%)

33 IF F=@ THEN G@

49 C=0+1

A% PRINT LEFTS (S3:F-11+5TRINGE(LEN(TS)
CHRE(128)) + RIGHTH(5%,:LEN(S%) -F-
LEN{(TS}+1)

30 P=F+LEN(TS$)

23 IF P{=LEN{(S$)-LEN(T$)+1 THEN 30

BO PRINT "FOUND"§ C% "OCCURRENCES™

The following is a sample run. However, you can input whatever text
you need.

SEARCH TEXT? YOU SHOULD TRY TO USE YOUR TRS-
8¢ COLOR COMPUTER AS MUCH A5 POSSIBLE.
TARGET TEST? TR

YOU SHOULD #B8Y TO USE YOUR TRS-8¢ COLOR
COMPUTER AS MUCH A5 POSSIBLE

YOU 'SHOULD TRY TO USE YOUR BES-8¢ COLOR
COMPUTER A5 MUCH AS PUSSIBLE

FOUND 2 OCCURREMCES

oK

Here’s what happens:

1. Line 15 assigns 5% (search) the value, YOU SHOULD TRY
TO USE YOUR TRS-80 COLOR COMPUTER AS MUCH AS
POSSIBLE.

2. Line 20 assigns T$ (target) the value of TR.

3. Line 30 tells the computer to start searching for T$ at the
first position (P) in S%.
4. In Lines 45 and 55, INSTR locates T$ and then prints and

blocks out T$ (CHR$(128)). It searches for the next occur-
rence of T$ and does the same.

5. Line 60 tells the computer to display the number of occur-
rences of T$ in S$.
DO-IT-YOURSELF PROGRAM 31-2

Write a program that returns the first and second occurrences of
the B in ABCDEB.

The following data storage program contains a mailing list of names
and addresses. This is an easy way to store information. Notice that
we've saved storage space by not putting spaces between the words.
Doing so makes it difficult for you to read but not for the computer to
do so.

Notice also that we assign a leading asterisk (*) to zip codes so the
computer doesn’t confuse them with street numbers.

In this case, we're looking for the names and addresses of all individu-
als who live in the area specified by zip code 650—. Consequently,
*650 is the target (A$).



5 CLS

19 A% = "*B3Q"
2@ ¥$ = "JAMES SMITH:BSS50HARRISON

DALLASTX#75002: 5UE
SIM,RT3,GRAVIOEMO#B3084:LYDIA
LONG»34456MITHST »ABBURYNI*32044 :
JOHN GARDNER ;BOXNBOEDMONTONALBERTACA"

38 Y% = "KERRY FEWELL +43BMAPLE
NEWORLEANS*#B89B67: BILL
DOLSEIN:B313E121 KANSASCITYMO*G4134:
STEVE HODGES» RTAFLORENCEME*B5288

49 Z$ = "KAREN CROSS,314HURLEY
WASHINGTONDC*18@11: ASBHER
FITZGERALD s233BHARRISONFTHORTHTX
#¥761@1: LIZ DYLAN,BOXOOONEWYORKNY
#B6B66"

So that your computer can search X$, add this line:
59 PRINT INSTR{X4$:0%)
Run the program. Your screen displays:

B2
Ok

This tells you the string contains a name and address you need.

What about Y$? Edit Line 50 so that the computer searches through
those addresses. Does it tell you it found the needed name?

Now try Z$. Displaying a zero is your computer’s way of saying,
“There aren’t any names you need on this list.”’

DO-IT-YOURSELF PROGRAM 31-3

Modify the mailing list program so that the following are true:

X$ contains two addresses that have a 650— zip.

The computer looks for every occurrence of *650, not
only for the first.

Never Change Horses in Midstring
(MID$)

MIDS$ statement gives you a powerful string editing capability by let-
ting you replace a portion of one string with another. The syntax of
MIDS$ is as follows:

MID$ (oldstring position,length) = newsiring
oldstring is the variable-name of the string to replace.
position is the number of the position of the first character to
be changed.

length is a number of characters to replace. if you omit
fength, the computer replaces all of oldstring

newstring is the string that replaces the specified portion of
oldstring.

Note: If newstring has fewer characters than length specifies,
the computer substitutes all of newstring. newstring is always
the same length as oldstring.

183



184

To see what we mean, run this program:

3 CLS

1@ A% = "KANSAS CITY» MO"
20 MID$(A$+14)="KS"

30 PRINT A%

Line 10 assigns A$ the value KANSAS CITY, MO. Then Line 20 tells
the computer to use MID$ to replace part of the oldstring (A$) with KS,
starting at Position 14.

Change Position 14 to 8 and run the program. The result is:
KANSAS CITY s MD

Now add the length option to Line 20:
20 MID$ (A% ,14,2)="KE"

Notice that it doesn’t affect the result since newstring and oldstring are
both two characters long. Change length to 1:

20 MIDA(A$ +144+1)="KSB"

The computer replaces only one character in oldstring, using the first
character in KS.

You'll find MID$ to be doubly effective when used with INSTR. Using
the two, you can “'search and destroy”’ text. INSTR searches: MID$
changes or "’destroys.” The following program illustrates this:

5 CLS

1@ INPUT "ENTER A MONTH AND DAY (MM/DD). "iX$
Z0 P = INSTR(X&,"/")

30 IF P = @ THEN 1@

43 MID$S(HX$+P+1)= "

50 PRINT X$ " IS EASIER TO READ. ISN'T IT?"

In this program, INSTR searches for a slash (/). When it finds one,
MID$ replaces it with a hyphen (-).

DO-IT-YOURSELF PROGRAM 31-4

Pretend you worked at a telephone company in the days when
telephone exchanges were being switched from alpha-characters
to numeric-characters. Write a program that uses MID$ to replace
all alpha-exchanges with numbers. Be sure to clear enough string
space or you'll get an 20S ERROR.

Learned in Chapter 31

BASIC WORDS CONCEPTS
STRINGS Creating a string of characters
INSTR Searching for a string
MID$ Replacing one string for another




Notes

185



186

CHAPTER 32

IN ONE DOOR AND
_ OUTTHE OTHER

Input/output statements let you send data from the kevboard to the
computer, from the computer to the TV, and from the computer to the
printer. These functions are primarily used inside programs to input
data and output results and messages.

[3
0™

A Line Drive
(LINE INPUT)

The first input/output statement is LINE INPUT. Its syntax is as follows:

String variapie

prompt is the prompting message.

string variable is the name assigned to the line that is input
from the keyhoard.

LINE INPUT is similar to INPUT, except for these differences:

When the statement executes, the computer does not dis-
play a question mark while awaiting keyboard input.

Each LINE INPUT statement can assign a value to only one
variable.

The computer accepts commas and quotation marks as part
of the string input.

Leading blanks, rather than being ignored, become part of
the string variable.

With LINE INPUT, you can input string data without worrying about
accidentally including delimiters such as commas, quotation marks,
and colons. The computer accepts everything. In fact, some situations
require that you input commas, quotation marks, and leading blanks as
part of the data.



Examples:

LINE INPUT X$ (ENTER)
lets you input X$ without displaying any prompt.

LINE INPUT “LAST NAME, FIRST NAME? "";N% EHTER)
displays the prompt “LAST NAME, FIRST NAME? ** and inputs data.
Commas do not terminate the input string. Notice that the prompt in-
cludes the question mark and the following space.

To understand LINE INPUT better, enter and run the following
program:

1o CLEAR 390: CLS

20 PRINT TAB(8) 3 "LINE INPUT STATEMENT":
PRINT

30 PRINT: PRINT "#%% EMTER TEXT #%x®

49 ¢ *%% GET STRINGs THEN PRINT IT ##=%

S¢ A% = "™ YGET A% TO NULL STRING
6@ LINE INPUT "==> "3 A%
7@ IF A% = " THEN END ‘IF STILL NULL

STRING: STOP!
8¢ PRINT A%
a¢ GOTO 5@

Customized Printing
(PRINT USING)

By now you know that the more you work with your computer, the
more it can work for you. For instance, maybe you want to Create a ta-
ble that uses numbers, but you don’t want to type the plus and minus
signs repeatedly.

PRINT USING makes short work of this kind of problem by enabling
the computer to print strings and numbers in a “customized” format.
This can be especially useful for accounting reports, checks, tables,
graphs, or other output that requires a specific print format.

Here is PRINT USING’s syntax:

PRINT USING format;item-list
format is a string expression that tells the computer the for-
mat to use in printing each item in jtem-list. it consists of
field specifiers’”” and other characters and is one (or one
set).

item-list is the data to be formatted.

Note: PRINT USING does not automatically print leading
and trailing blanks around numbers. it prints them only as
you indicate in format.

You may use the following field specifiers as part of format:

# $$ -
, xxg ArAn
*x + !

The examples in the field
specifier list are in the im-
mediate mode but may be
incorporated into a pro-
gram line.

187



188

Below is an explanation of each field specifier, followed by examples

of its use.

#

* ¥

A number sign specifies the position of each digit in the
number you enter. The number of number signs establishes
the length of the numeric field.

If the field is larger than the number, the computer displays
the unused positions to the left of the number as spaces and
those to the right as zeros.

PRINT USING "s#us#s"i 66.2 (ENTER
66

If the field is too small for the number, the computer dis-
plays the number with a leading % sign.

PRINT USING "=#"3 BB.2 (ENTER
4LEB

You can place the decimal point at any field location that
you established with the number sign. The computer auto-
matically rounds off any digits to the right of the decimal
point that don’t fit into the field.

PRINT USING "#,s#"3§ 56,25 (ENTER

466.3
PRINT USING "s##.8"3 38,76 (ENTER
58.8

PRINT USING "##,#x
"11¢.2,5.3,66.789,.,234 (ENTER
12.20 5.30 66.78 + 23

Note: In the last example, format contains three
spaces after the final number sign. These spaces sepa-
rate the numbers when the computer displays them.

The comma, when placed in any position between the first
digit and the decimal point, displays a comma to the left of
every third digit. The comma establishes an additional posi-
tion in your numeric field. To avoid an overflow (indicated
by a leading percent sign), place a comma at every third
position in the numeric field. Overflows occur when the
field isn’t large enough.

PRINT USING “"#xusxssss,"] 12345678
12,345,678

PRINT USING "#uassgses,"] 123456789
123,456,789

PRINT USING “#a#,ses,su8"5 123456789
123.:436,789

When you place two asterisks at the beginning of the nu-
meric field, the computer fills all unused positions to the left
of the decimal with asterisks. The two asterisks establish
two more positions in the numeric field.

PRINT USING "#xuusa; 44,0
* % %%



20
3@
40
S0
6O
70
80
g0

$ Placing a dollar sign ahead of the numeric field causes
the computer to place a dollar sign ahead of the
number when displaying it. This, of course, is handy
when you are working with money.
PRINT USING "$#u#,u8"3 18,6735
% 18.67
$% Two doilar signs placed at the beginning of the field cause
the computer to display a floating dollar sign immediately
preceding the first digit.
PRINT USING "$s##,#u#"3 18,6735
$18.67
**$ You can place this combination of symbols at the beginning
of the field also. If you do, the computer fills the vacant po-
sitions to the left of the number with asterisks and places a
dollar sign in the position immediately preceding the first
digit.
PRINT USING "*%¢$,##"35 8,333
*$8,33
+ When you place a plus sign at the beginning or end of the
field, the computer precedes all positive numbers with a
plus sign and all negative numbers with a minus sign.
PRINT USING "+*%uusags" i 75200
*%+73200
PRINT USING "+#u#%#"3§ -2106
-216
- When you place a minus sign at the end of the field, the
computer follows all positive numbers with a space and
precedes all negative numbers with a minus sign.
PRINT USING "#uug,.#-"37 -B124.420
gl1z24.,4-
PRINT USING "% vy "BLUE’S STORE"
BLUE’S
To see PRINT USING in use, run the following program:
5 CLS
10 A% = "**dud  auwuss, vd DOLLARS"

INPUT "WHAT 'S YOUR FIRST NAME"3 F#
INPUT "WHAT 'S YOUR MIDDLE NAME"3 M$
INPUT "WHAT’S YOUR LAST NAME" i L%
INPUT "ENTER THE AMOUNT PAYABLE"3 P

CLS

PRINT "PAY TO THE ORDER OF "3
PRINT USING "I["SiF&i" ,"M&i", "3
PRINT L%

100 PRINT: PRINT USING A% P
119 GOTD 112

Line 10 defines the format, using **$ to fill the leading spaces with as-
terisks and placing a dollar sign directly before the first number. This
format is sometimes used to protect checks from being altered.

Do you have all that
memorized?

To learn more about
PRINT USING, experiment
with this program:

5 CL8

1@ INPUT
"FORMAT" iF$

2@ INPUT "ITEM-
LIBT"SI

39 PRINT USING
F$il

48 GOTO 5

This works fine for numeric
data. For string data,
change | in Lines 20 and
30 to 1$.

189




Net results? Is this tennis or
big business?

190

Line 10 also sets up the numeric field using the # sign. Thus, when-
ever you enter a number that is smaller than the numeric field, the
computer precedes the number with asterisks to fill the unused spaces.
Included in Line 10 are two more field specifiers, the decimal point
and the comma.

The computer displays the decimal point at only those positions speci-
fied. Because vou tell the computer to include two places to the right
of the decimal (for cents), the computer rounds all numbers of more
than two digits to two digits. if you enter a number that has one or no
digits to the right of the decimal point, the computer inserted zeros.

The exclamation marks in Line 80 tell the computer to use only the
first character (the initial) of F$ (your first name) and of M$ (your mid-
dle name).

N © DO-IT-YOURSELF PROGRAM 32-1

Change the program so that no leading asterisks appear on the
check.

DO-IT-YOURSELF PROGRAM 32-2

Write a program that creates a table showing your income and ex-
penses on a monthly basis. Don't bother to itemize your expenses;
just calculate the totals and the net result (plus or minus).

Use STRINGS to organize the table, making it flexible enough so
you can use it month after month without changing the entire
program.

POS

POS is an input/output function that returns the current cursor position
on the screen or the carriage position on the printer. Here is its syntax:

PGS (device numbe}')

device number is G (screen) or —2 (printer)

PRINT TAB (8) POS0)
returns the number § at Column 8 in the current line.

Mete: The leading space before /8" causes it to appear in Col-
umn 9,

One way to use POS is to disable the “wrap-around’’ feature on the
screen or the printer. Doing this prevents words from being broken in
the middle. On the other hand, it necessarily shortens the line length.
Run the following program to see POS at work:

3 LB
18 4% = INKEYS
20 [F A% = "" THEN 1@

3@ IF POS (@) » 22 THEN IF A% = CHR$(32) THEN
As=CHR$(13)

4% PRINT A%

0B GUTO 1@

This program lets yvou use the keyboard as a typewriter (except that
you can’t correct mistakes unless you first disable the printer). POS
watches the end of the line so no word is divided.



In Line 30, the computer checks to see if the “current’” cursor position
is greater than Column 22. (The screen is 32 columns wide.) If the cur-
sor passes Column 22, the computer begins a new line the next time
you press the space bar (CHR$(32)). When the computer decides to
begin a new line, it does so by printing a carriage return (CHRS$(13));
in effect, the computer presses (ENTER).

Write a program that uses POS to space words evenly on a single
line.

De-Vice Squad

Did you ever think of your video display as an ““output” device and
your keyboard as an “input” device?

With PRINT, PRINT USING, LINE INPUT, and POS, you can use de-
vice numbers to direct input or output. For instance, suppose you type:

PRINT #-2, USING "###,sxs"j123.45678 (ENTER
The screen remains "silent’” while the printer prints:
123.456

You can use any of the available field specifiers with PRINT #-2,
USING.

POS(-2) returns the printer’s current print position (the current carriage
position). Run the following program:

5 CLS

1 FOR I =1 70 1@

20 PRINT #-24 "%"3

30 PRINT "PRINTER POS="3§ POS(-Z)
49 NEXT I

3@ PRINT #-2," "

The screen shows the print carriage position as it changes. Note that
the position is figured internally, not mechanically. Most printers can’t
print until Line 50 executes.

We chose to test cursor
position 22 since it was 10
spaces less than the maxi-
mum screen width, 32;
that gives plenty of room
to complete a long word.

191



192

LINE INPUT # works similarly, with the one difference that it lets you
read a “line of data” from a cassette file.

LINE INPUT # reads everything from the first character up to which-
ever of the following comes first:

A carriage-return character that is not preceded by a line-
feed character

The 249th data character
The end-of-file

Other characters encountered (quotes, commas, leading blanks, and
line feed/carriage return sequences) are included in the string. For
instance:

LINE INPUT #-1,A%
inputs a line of cassette file data into A%.

The following program uses LINE INPUT # to count the number of
lines in any cassette-stored program that is CSAVEd in ASCIl format
(using the A option):

19 CLEAR 50¢

2@ LINE INPUT "NAME OF DATA FILE?T "iF$
30 K=0¢ ‘K IS THE COUNTER

49 OPEN "I"s-1,F$%

3@ IF EOF (-1) THEN i1o@

BE@ LINE INPUT #-1, A%

78 K=K+1

B® PRINT A%

92 GOTO S0

100 CLOSE#-1

119 PRINT "FILE CONTAINED" S Kji"LINES"

Learned in Chapter 32

BASIC WORDS CONCEPTS

LINE INPUT Inputting a line from the keyboard

PRINT USING Displaying strings and numbers in a cus-
tomized format

POS Determining the current cursor position or

the current carriage position

Notes




CHAPTER 33
A LITTLE BYTE

- OF EVERYTHING

This chapter contains a hodge-podge of Extended Color BASIC features
that don’t fit neatly into categories but that, nonetheless, can be very
helpful.

*

[+
~ ¥ TRON
o M -
d ST AL
- —
e — N
o Oy

LET

Many versions of BASIC require that you use LET whenever you assign
a value to a variable as in the statement LET X=5. Although extended
Color BASIC does not require LET, you may want to use it anyway.
One reason is to ensure compatibility with those versions of BASIC
that do require it.

For example, these statements are the same:
10 LET A$ = "A#”
10 A$ p— //A#//

TRON/TROFF Commands

TRON (““trace on”’) and TROFF (““trace off”’) are debugging aids that
help you trace the execution of program statements.

TRON turns on a “tracer” that displays each line number of the pro-
gram as it is executed. The numbers appear enclosed in brackets.
TROFF turns off the tracer.

Examples:

TRON
TROFF (ENTER

193



194

Trace the execution of the ’Lines” program. Type TRON (ENTER).
Then run the program:

3 PCLS

18 PMODE 341

20 SCREEN 141

30 LINE (040)-(255,191),,PSET

The computer displays:

(3) (10) (2@) (3¢)
OK

This display indicates that the program first executed Line 5, then 10,
20, and finally 30. Remember to type TROFF ENTER) to turn off the
tracer.

Time After Timer. ..
(TIMER)

Your computer also has a built-in ““timer’’ that measures time in six-
tieths of a second (approximately). The moment you power-up the
computer, the timer begins counting at zero. When it counts to 65535
(approximately 18 minutes later), the timer starts over at zero. It pauses
during cassette and printer operations.

At any instant, you can see the count of the timer by using the TIMER
function. Type:

PRINT TIMER (ENTER

The TIMER function displays a value from 0 to 65535.

You can also reset the timer to any specified time by typing:
TIMER = number

number is in the range 0 to 65535.

To see TIMER (and PRINT @ USING, another “"new”’ function), run the
following program called “"Math Quiz.”” It presents you with a math
problem. When you press (&), (B), (€), or (D), the  computer tells
you whether the answer is right or wrong. Then the computer uses the
timer to tell you the time you took to answer (using TIMER).

12 DIM CH(3) sL$(3) 'CH(#)=CHOICES,
L$=ANSHER FORMATS

20 LL=10:UL=20 'LOWER LIMIT AND UPPER LIMIT
FOR H AND V

30 NV=UL-LL+1

40 P$="WHAT'S ### + wus ?" 'QUESTION FORMAT

5@ FOR I = @ TO 3 "INITIALIZE CH{ )

BO L$(I)=CHR$(I+BS)+") nun"

79 NEXT 1

80 CLS

9@ X=INT(RND(NV(+LL~-.5) 'GET RANDOM ¥
BETWEEN LL AND UL

100 Y=INT(RND(NUW+LL-.5) ‘GET RANDOM ¥
BETWEEN LL AND UL

112 R=INT(X+Y+.,5) ‘CORRECT ANSWER



130 FOR I = @ TO 3 'GET MULT. CHOICES
140 CH(I)=INT(RND(NUVY+LL~,3)
15@ NERXT 1
160 RC=RND{(4)-1 'MAKE ONE CHOICE RIGHT
17@ CH(RC) =R
1B¢ PRINT @ 32, USING P&3iXY
‘DISPLAY PROBLEM
199 FOR LN=3 TO B
209 PRINT 8 LN * 32+10,USING L$(LN-3)3CH
(LN-3)
219 NEXT LN
220 TIMER = @

239 A%$=" " 'CLEAR KEYBOARD

240 A$=INKEY$: IF As="" THEN 249

250 SVU=TIMER 'IF KEY PRESSED, SAVE TIMER
CONTENTS

260 IF A%<"A" OR A%$>"D" THEN 249 "INVALID
KEY-GO BACK

265 PRINT @ 8 * 32+10.A%

270 K=ASC(A%) -B3

780 IF CH(K)=R THEN PRINT "RIGHT!": GOTO 300

299 PRINT "WRONG! ANSWER IS "5 R

300 PRINT "YOU TODK": S8Y/6035 "SECONDS"

319 INPUT "PRESS <ENTER> FOR NEXT PROBLEM"S
EN

320 GOTO 8O

Through trial and error, change the upper and lower limits (Line 20)
for h and v. Make the program perform a mathematical operation other
than addition or have the computer keep score, based on your time.
Add 5 seconds for each incorrect answer.

Hexadecimal and Octal Constants

Extended Color BASIC lets you use both hexadecimal and octal
constants.

Hexadecimal numbers are quantities represented in Base 16 notation,
composed of the numerals 0 to 9 and the ""numerals” A to F. Hexa-
decimal constants must be in the range 0 to FFFF, corresponding to the
decimal range 0 to 65535.

To indicate that a number is an octal constant, precede it with the
symbol &H, as shown here:

&HA0T0 &HFE &HD1  &HC  &H4000

Octal numbers are quantities represented in Base 8 notation, com-
posed of the numerals 0 to 7. Octal constants must be in the range 0
to 177777. The computer stores them as two-byte integers that corre-
spond to the decimal range 0 to 65535.

To indicate that a number is an octal constant, precede it with the
symbol &O or &, as shown here:
&0O70  &044 U777 &7170  &17  &0O1234

The use of "hex’” and octal constants is convenient in programs that
reference memory locations and contents. For further information, read
a book on machine-language programming.

195



HEX$

To convert a number from decimal to hexadecimal, use HEX$. The
syntax is as follows:

HEX$ (number)
number is a decimal number of variable from 0 to 65535.

For example, the following program displays the hexadecimal value of
any decimal number smaller than 65536. It returns a string that repre-
sents a hex value.

3 CLS
1@ INPUT "IF A NUMBER'S DECIMAL VALUE IS8"3
DEC

29 PRINT "ITS HEXADECIMAL VALUE I8
HEX$ (DEC)

Learned in Chapter 33
BASIC WORDS CONCEPTS
LET Using LET to make programs compatible
with other versions of BASIC
TRON, TROFF Using the tracer to follow the execution
of program statements
TIMER Keeping track of and changing the time
in a program
HEX$ Converting a number from decimal to
hexadecimal
Notes

196



Chapter 34

USING MACHINE-
LANGUAGE SUBROUTINES

’Machine-language’’ (ML) is the low-level language that your computer
uses internally. It consists of microprocessor instructions. ML subroutines
are useful for special applications simply because they can do things
much faster than BASIC.

Writing such routines requires familiarity with assembly-language pro-
gramming and with the microprocessor’s instruction set. For more infor-
mation, see 6809 Assembly Language Programming, Lance Leventhal,
Osborne/McGraw Hill, 1981.

This section follows the step-by-step approach for using ML subroutines:

1. Protecting Memory

2. Storing the ML Subroutine in Memory
3. Telling BASIC Where the Subroutine Is
4. Calling the Subroutine

5. Returning to BASIC

We present a sample BASIC program that performs all five steps. You
may type in the BASIC program lines as they are given, but don't try to
run the program until you've read all the steps.

Our ML subroutine is simple. It gets a character from the keyboard.
Then it returns the ASCII code for this character to the BASIC program.
An assembly-language listing of this routine is later in this section.

Our ML subroutine has a few features not available with BASIC’s IN-
KEY$ or INPUT statements. First, it returns any key code, including the
one for (BREAK). Second, it lets you key in control codes A-Z (CTRL-A
through CTRL-Z).

To key in a control character, press (4), release it, then press any key
from (&) to (Z). The control codes generated range from 1 to 26.

197



198

STEP 1. PROTECTING MEMORY

With the CLEAR statement, you can reserve a section of memory for
storing your ML subroutine. The first CLEAR parameter sets the string
space; the second sets the memory protection address. For example:

3 CLEAR 25, 12000

sets the string space to 25 bytes and reserves memory addresses from
12000 to the end of memory (see the Memory Map). You can now
safely store your ML subroutine in this area.

STEP 2. STORING THE ML SUBROUTINE IN MEMORY

You can load an ML subroutine from tape (via CLOADM), or you can
poke it into memory (using the BASIC POKE statement). In our example,
we'll store the individual machine codes in DATA statements, then read
and poke each code into the correct memory address. The codes are in
the ML subroutine’s assembly listing, shown later in this section.

20 FOR I =1 70O 28

3@ READ B: POKE 12000 + I, B

49 NEXT I

o0 DATA 1734 159, 160, @

B@ DATA 39, 230, 129, 10, 38, 17
7@ DATA 173, 1539, 1680+ @ 39, 259
73 DATA 129, B5, 45, 2

80 DATA 128, 84, 31, 137+ 79

90 DATA 126+ 180, 244

STEP 3. TELLING BASIC WHERE THE SUBROUTINE IS

Before you can use the ML subroutine, you have to tell BASIC where
the routine starts. Do this with the DEFUSR statement, which has this
format:

DEFUSRn = address tells where, in memory, an ML subroutine
starts
n is the number of the ML subroutine (0-9).
address is the first address in memory where the ML subrou-
tine is stored.

In this example, the ML subroutine (which we’ll call ML Subroutine 1)
is stored in memory starting at Address 12000. To tell this to BASIC, use
this statement:

19 DEFUSRL 12000

STEP 4. CALLING THE SUBROUTINE

To “call” the ML subroutine, use the USR function with this format:

duinmy variable = USRn(argument) calls an ML subroutine

n is the number of the ML subroutine (0-9).

argument is a value you want to pass to the ML subroutine.

dummy variable is a variable you can use to store the data
returned by USR.

For example:
112 A = USR1(®)



calls ML Subroutine 1 and passes it Argument 0. In this example, 0 is a
“dummy argument!” The ML subroutine won't use it. (The purpose of
Variable A is explained in the next step.)

STEP 5. RETURNING TO BASIC

If you want to return a specific integer value to BASIC, as we do in this
example, your ML subroutine must: {1) load the integer into Register D,
(2) end by calling GIVABF, a special ROM subroutine. GIVABF causes
your BASIC program’s USR function to “return;’ replaced by the integer
you stored in Register D.

In this example, our ML subroutine loads the key you press into Register
D and then calls GIVABE This causes USR to return replaced by the key
you press. Since Variable A equals the value USR returns, Variable A
equals the key you press.

If you don’t want to return a specific value to BASIC, end the subroutine
with an RTS instruction. USR “‘returns” your original dummy argument
(0).

The BASIC Program

This is the entire program with the ML subroutine poked into memory.
Type it in carefully; then run it.

Fach time you press a key, control returns to BASIC with the ASCII code
for that key. Try pressing (BREAK). You'll get the code for (BREAK) 3. The
BASIC program ends when you press ENTER) or (4 (WD.

To get any of the codes 1 through 26, press (4, release it, then press a

key from (A) to (2.

3 CLEAR 23 12000 'RESERVE MEMORY

19 DEFUSRI=1200013 CLG

20 FOR I = 1 7O 2B "STORE EACH BYTE OF OBJECT
CODE

39 READ B: POKE 12000 + I, B

40 NEXT 1

45 'HERE IS5 THE OBJECT CODE

590 DATA 173, 1539, 160, 2

B@ DATA 39, 250, 128, 1@, 38, 12

7@ DATA 173, 1389, 160, @, 39, 250

73 DATA 129, 65, 43, 2

8o DATA 128, 64, 31+ 137, 78

88 DATA 12B, 180, 244

88 ‘TELL BASIC WHERE THE ROUTINE IS

19@ PORE 275, 13: POKE 276, 211

118 A = USRI(®)Y 'CALL THE SUBROUTINE AND GIVE
RESULT TO A

115 IF A = 13 THEN END

12¢ PRINT "CODE ="3 A

139 GOTO 112

For a variation in the program, change line 120 to:
120 PRINT CHR${A) ‘DISPLAY THE CHARACTER

Most control keys (4] followed by a key) have no effect when printed.
Try (40 (HD, though, and you see the cursor backspace.

The address of GIVABF is
Hexadecimal B4F4 or Deci-
mal 46324. However, if you
have Advanced Color
BASIC or Extended Color
BASIC Version 1.2 or later,
this address may have been
changed.

=

If you have a Deluxe Color
Computer, use the CIRD
key, rather than (3.

=

199



Assembly language is not
meaningful to the com-
puter. It is a set of memory
aids and symbols we use
for convenience. Assembly
language must be trans-
lated, or “assembled,’ into
machine code, which the
computer understands. In
the listing above, the ma-
chine code is given in hex-
adecimal form. We
converted it to decimal
numbers for our BASIC
program.

The address of INTCNV is
Hexadecimal B3ED. How-
ever, if you have Advanced
Color BASIC or Extended
Color BASIC Version 1.2 or
later, this address may have
been changed.

200

ML Subroutine Listing

This is the assembly-language listing of our ML subroutine example. To
use it, you must have an assembler, such as EDTASM (Catalog #26-
3250) or Disk EDTASM (Catalog #26-3254). You can’t use this assem-
bly-language listing from BASIC.

Hexadecimal Source  Code Comments

Object Code
iPOLL FOR A KEY

AD 9F A@ @@ LOOPL  JSR (POLCAT)

27 FA BEQ LOOPL sIF NONE,» RETRY

g1 24 CHMPA #1@ tCTRL KEY (DN
ARWY?

26 ocC BNE OUT iNOy 50 EXIT

AD 3F A® 0@ LOOPE  JSR  (POLCAT) SYES. 80 GET NEXT
KEY

27 FA BEG LOOPZ PIF NONE s RETRY

81 Z9 CMPA #B3 +I5 IT A - 27

2D 22 BLT 0OUT iIF < Ay EXIT

8¢ 49 SUBA #B4 sCONVERT TO CTRL
A/Z

iF 89 ouUT TFR  AsB SGET RETURN BYTE
READY

4F CLRA sZERD MSB

78 B4 F4 JHMP O GIVABF FRETURN VALUE TO
BABIC

FOLCAT EQU 4de8tce

GIVABF EQU 46324

Passing Values to an ML Subroutine

USING THE INTCNV ROUTINE

If you want to pass an integer to your ML subroutine, use the integer as
the “argument” in your USR function. For example:

A=USR1I{(S)

calls Machine Code Program 1 and passes the argument 5 to it. You
can then call the INTCNV routine, which gets the integer and stores it
in Register D.

USING THE VARPTR FUNCTION

Another way to pass an argument to your ML Subroutine is to pass a
“pointer’” to the address where a variable’s value is stored. You can do
this with the VARPTR function:

VARPTR variable returns a pointer to where the variable’s value is
stored

For example:
A=USRI(VARFTR(B))

calls ML Subroutine 1 and passes a pointer to Variable B’s address. The
pointer is stored in Register X. Your ML subroutine needs to know
whether the variable is string or numeric.



&

if the variable is string, your ML subroutine can find the string’s 5-byte
descriptor in Register X. This descriptor tells where the string is:

Byte 1 = the length of the string (in characters)

Byte 2 = reserved for the computer’s use

Bytes 3 and 4 = address of the first byte in the string
Byte 5 = reserved for the computer’s use

if the variable is numeric, your program can find the address of the
number’s floating point value in Register X. This floating point value has
this format:

Byte 1 = the exponent of the mantissa

Byte 2 = the mantissa’s most significant byte (MSB)
Byte 3 = the mantissa’s next MSB

Byte 4 = the mantissa’s next MSB

Byte 5 = the mantissa’s least significant byte (LSB)

The exponent is a signed 8-bit integer with 128 decimals added to it.
An exponent of 0 means the number is 0, in which case the mantissa is
insignificant. The exponent’s most significant bit stores the exponent’s
sign: 0 if positive, 1 if negative,

il

The mantissa is stored in normalized form with the most significant bit
of the mantissa’s MSB assumed to be 1. This bit can indicate the man-
tissa’s sign: O if positive, 1 if negative.

You may want to use VARPTR to pass an array variable’s pointer to an
ML subroutine. For example:

A=USRI{VARPTR(B(3))
calls ML Subroutine 1 and passes a pointer to Array B's Element 5.

Your ML subroutine can find the elements’ values in memory as follows
(from low to high memory):

Value of first element of last dimension
Value of last element of last dimension
Value of first element of first dimension
Value of last element of first dimension

Each element is five bytes long.

Returning Values to BASIC

USR always returns at least one value to BASIC. This value is the argu-
ment you originally pass to the ML subroutine, unless your ML subrou-
tine changes or modifies it, as described below.

USING GIVABF TO RETURN AN INTEGER

To return a specified integer to BASIC, you can have your ML subroutine
load the integer into Register D and call GIVABF, as demonstrated
earlier.

MODIFYING BASIC VARIABLES

You can return any specified value to BASIC by having your ML subrou-
tine modify a BASIC variable’s value. For example, assume you call an
ML subroutine with this statement:

201



202

#

A%=(USRI(UVARPTR(B%))

You can have your ML subroutine modify B$'s value and then end the
routine with an RTS instruction. This causes USR to return with B$'s
modified value.

if your ML subroutine modifies a string variable, be careful of the
following:

Although you can change a string descriptor’s length byte (o
“shorten’” a string, you cannot “lengthen’” a string. If vou
don’t know what size string your ML subroutine will return,
reserve 255 bytes (the maximum size) for the string’s value
before passing it to the ML subroutine, For example:

Be=5TRING$ (253}
A% = UBRO(VARPTR(B%))

passes a pointer to a 255-character string of blank spaces to
the USR function. The ML subroutine can then put a string
of up to 255 characters into the memory pointed to by B$ or,
if necessary, shorten the string’s length byte.

You can modify the starting address of a string by changing
the 2-byte pointer in the string descriptor. When you do this,
though, we recommend the new starting address be an ad-
dress included in the original string.

You can swap the starting addresses of two strings. This may
be useful for sorting strings. If you do this, though, be careful
not to “intersect’” two strings.

If your ML subroutine modifies a variable that already points
to a string literal, this will change your BASIC program. For
example, assume you have this statement in your BASIC
program:

Bg = *aABC"
if your ML subroutine modifies B$, your BASIC program is

changed. To avoid this problem, add a null string (') to any
string literal that your ML subroutine will modify. For

example:
B $ m 1 ﬁ B C 14 + i

The null string forces BASIC to copy the string into string
space, where your ML subroutine can safely modify it.

Using Stack Space

An ML subroutine, called by USR, that requires more than 30 bytes of
stack storage must provide its own stack area. Save BASIC's stack
pointer upon entry to the USR function, setting up a new stack pointer
and restoring BASIC's stack pointer prior to returning to BASIC. The val-
ues of the A, B, X, and CC registers need not be preserved by USR.



Notes

203






SECTION V

ODDS AND ENDS






SUGGESTED ANSWERS
TO DO-IT-YOURSELF
PROGRAMS

Do-It-Yourself Program 4-4

Sounding tones from bottom of range to top and back to bottom:

19 FOR X = 1 TO 2583

2@ SOUND X1

3@ NEXT X

49 FOR X = 255 T0O 1 STEP -1
59 SOUND X1

BO NEXT X

Do-It-Yourself Program 5-2

Lines added to clock program:

92 FOR T = 200 TO 210 STEP 3
g4 SO0UND T+1

85 NEXT T

97 FOR T = 21¢ 7O 200 STEP -5
98 S0UND Tsi

99 NEXT T

Do-It-Yourself Program 5-3
10 FORC = @ 70 8B
20 CLS(O)
30 FOR X = 1 TO 460
49 NEXT ¥
39 NEXT C

Do-It-Yourself Program 7-2
S FORN=1T0 10
19 PRINT "CHOOSE YOUR CHAMBER(1-10)"
20 INPUT X
30 IF X = RND(1@) THEN 100
49 SOUND 220, 1
5@ PRINT "--CLICK--"
B@ NEXT N
g5 CLE
79 PRINT @ 230 "CONGRATULATIONG!I "
B@ PRINT @ 283, "Y0OU MANAGED"
99 PRINT @ 296, "TO STAY ALIVE"
95 END
19@ FOR T = 133 70 1 STEP -5
11@ PRINT "BANGIPIDEY
120 SOUND Ty 1
130 NEXT T
149 CLS
150 PRINT B 230 "SORRY » YOU'RE DEAD®
160 SOUND Ly 50
170 PRINT B 298 "NEXT VICTIM PLEASE"

207



208

Do-It-Yourself Program 7-3

1@
20
30
4@
So
60
7@
ae
g0

100 IF R
118 IF R
120 IF R

CLS

A = RND(G)
B = RND(G)
R=HA+D8

PRINT @ 200, A

PRINT @ 214, B

PRINT @ 384, "YOU ROLLED A" R
IF R 2 THEN Goo

IF R 3 THEN Goo

12 THEN Go@

7 THEN S00

11 THEN 500

oo

130 FOR X = 1 TO 800

148 NEXT X

153@ CLS

169 PRINT @ 195, "ROLL ANOTHER" R "AND YOU

WIN"

170 PRINT @ 262, "ROLL A 7 AND YOU LOSE"
180 PRINT @ 420, "PRESS <ENTER» WHEN READY"
183 PRINT @ 4536, "FOR YOUR NEXT ROLL"

198 INPUT A%

200 X = RND(B)

218 Y = RND(B)

220 2 = X + ¥

225 CLS

e A

230 PRINT @ 200, X
240 PRINT @ 214, Y
250 PRINT @ 384, "Y0OU ROLLED A" Z

260 IF Z
278 IF 2

R THEN S0
7 THEN Goo

28@ GOTO 180

500 FOR X = 1 TO 1000

510 NEXT X

515 CLS

520 PRINT @ 230, "YOU'RE THE WINNER"
330 PRINT @ 284, "CONGRATULATIONG ™
54¢ GOTO G302

0@ FOR X = 1 TO 1000

610 NEXT X

613 CLS

620 PRINT @ 284, "SORRY s YOU LOSE"
630 PRINT @ 458, "GAME'S OVER"

Do-It-

Yourself Program 8-2

3 CLS

6 PRINT B Z23@,» "YOUR NAME" S
8 INPUT N%

12 CLS

157
20 X
3¢ Y

T+ 1
RND(1020)
RND(10@)



4
43
5@
Ea
7@
8o
gz
83
84
g3
86
87
ag
a3
a7
ag

99

END

PRINT @ 228, "WHAT IS" X "+" Y3
INPUT A
IF A = X + Y THEN 82

PRINT @ 326, "THE ANSHWER IS" X + ¥
PRINT @ 385, "BETTER LUCK NEXT TIME " N$%
GOTO 100

CLS(7)

FOR M = 1 70 4

SOUND 173+ 1

SOUND 200+ 1

NEXT M

CLS

PRINT @ 232+ "CORRECT »* N$ =1 11"
C=0C+1

PRINT @ 289 “"THAT 18"

PRINT @ 322, C “0OUT OF" T "CORRECT

ANSWERS"
PRINT @ 362, C/T#1@@ "% CORRECT":IF T=10 THEN

109 PRINT @ 420, "PRESS <ENTER» WHEN READY®
192 PRINT @ 438, "FOR ANDTHER™

125 INPUT A%

1106 GOTO 1@

Do-It-Yourself Program 10-1

3 CLE

7 PRINT @ 38, "TABLE OF SQUARES"

8 PRINT

12 P=2

Z@ FOR N =2 70 19

25 GOSUB Zeee

3@ PRINT N "%" N "=" E,

4@ NEXT N

5@ END

20@@ REM FORMULA FOR RAISING A NUMBER TO A
POWER

2010 E = 1

2020 FOR X = 1
2030 E = E % N
2040 NEXT X

2050 IF P =

T0 P

@ THEN E = 1

206® RETURN

Do-It-Yourself Challenger Program (Chap. 11)

i@
i3
20
23
23
3¢
33
a8
50

PRINT "TYPE A SENTENDE "

INPUT 5%

PRINT "TYPE & PHRASE TO DELETE"
INPUT D%

L = LEN(D$)

PRINT "TYPE A REPLACEMENT PHRAGBE"
INPUT R$%$

FOR X =1 TO LEN(E$)

IF MID$(S%:X:L) = D% THEN 100

209



210

BO NEXT X

79 PRINT D% "-- IS5 NOT IN YOUR SENTENCE"

80 GOTO 2@

100 E = X - 1 + LEN(D®%)

110 NS% = LEFT$(S5%,X-1) + R& +
RIGHT$(S$sLEN{S%) - E)

129 PRINT "NEW SENTENCE IS "

130 PRINT NG#

Do-It-Yourself Program 14-2

5 PMODE 141

19 PCLS

20 SCREEN 1.1

30 X = RND(256) -1
49 Y = RND(192) -1
50 C = RND(E) -1
B® PSET (X ¥ L)
70 GOTO 3@

Do-It-Yourself Program 15-1

3 PMODE 141

19 PCLS

20 SCREEN 1,1

25 LINE (0,0)-(255,191) yPSET

30 LINE (0,191)-(255,0) »P5ET

35 LINE (10,10)-(255+181) +PE5ET B
49 GOTO 40

Do-It-Yourself Program 15-2

5 PMODE 1.1

19 PCLS

20 SCREEN 1.1

30 LINE (724+4168)~-(2004+72)

PSET B 'FRAME
40 LINE (72+72)-(136,36)

PSET 'ROOF
45 LINE (200,72)-(136,36)

PSET ‘ROOF
S50 LINE (120,1B8)-(132,100)

PSET B ‘DOOR
55 LINE (152,60)-(168+36)

PSET +BF 'CHIMNEY
G® LINE (1B5+128)-(191,100),

PSET B "THINDOW

B3 LINE (178+128)-(178,100),

PSET "WINDOW PART

78 LINE (1B83,114)-(191,114),

PSET "WINDOW PART

75 LINE (85,128)-(111,100)
PSET B "TWINDOW



80 LINE (B5,114)-(111,114),

PSET ‘WINDOW PART
85 LINE (98,100)-(88,128)

PSET ‘WINDOW PART
g4 GOTO 90

Do-It-Yourself Program 15-3

5 PMODE 1.1

i® PCLS

20 SCREEN 141

30 Y=0

490 FOR X = @ TO 200 STEP 10
30 0Y = ¥

6@ Y = 30-0Y

7O LINE (X,»100-Y)-(X+10,100-0Y) »PSET
B0 NEXT

8¢ GOTOD 90

Do-It-Yourself Program 16-1

1YY= -1

3 CLS

19 PRINT @ 193,"D0 YOU WANT TO SEE A SQUARE?"
20 FOR X = 1 TO 100@: NEXT X

30 PMODE 1.1

35 PCLS

49 SCREEN 1:¥+1

6@ LINE (73,130)-(180.:75) ,PSET B
70 FOR X = 1 TO 10600 NEXT X

73 ¥ = Y

g@ GOTO S

Do-It-Yourself Program 18-1

Make the following changes:

22 PCOPY 4 70 3
32 PCOPY 3 TO 2
42 PCOPY 2 TO 1

Delete Lines 11, 21, and 31.

Do-It-Yourself Program 18-2

10 PCLEAR B

20 PMODE 441

25 PCLS

30 SCREEN 1.1

49 LINE (@:0)-(25353,191) PSET
43 FOR Y = 1 TO 20: NEXT Y

50 PMODE 4.2

211



212

55
60
65
70
75
80
85
90
95
96

SCREEN 12

LINE (2+@)-(255,191) +PSET
FOR Z = 1 TO 20 NEXT Z
PMODE @3

SCREEN 141

LINE (2,2)-(255,191) +PSET
FOR A = 1 TO 20: NEXT A

PMODE 1.4
SCREEN 131
PCLS

120 LINE (@4+2)~(2554+191),PSET
193 FOR R = 1 TO 20: NEXT R
119 GOTO 20

Do-It-Yourself Program 19-1

12
29
3@
49
5@
5@
70

PMODE 4,1

PCLS

SCREEN 140

FOR RADIUS =1 TO 100 STEP 10
CIRCLE (128, 9B)RADIUS

NEXT RADIUS

GOTO 7@

Do-It-Yourself Program 19-3

5 PMODE 4.1

10
20
3@
49
50

PCLS

SCREEN 1,0

CIRCLE (200 4+49)4+30+4+1,,13+.63
CIRCLE (239+10):52:3+1,+.,29,+.48
GOTO 5@

Do-It-Yourself Program 19-4

3

10
15
29
23
3@
33

490
45
55
60
70

73
g

PMODE 11

SCREEN 140

PCLE 3

COLOR 142

CIRCLE (200+49)+304+4+14+,13+.63 'MOON
CIRCLE (230+10)4+524+4+1+,29,.,48 ‘'MOON
LINE (1092,185)-(180,125) ,PSETB
"HOUSE FRAME

LINE -(1494+85) +PSET "ROOF

LINE -(100,+1253) +PSET "ROOF

LINE (119+160)-(1254+130) sPSET+B
"WINDOW

LINE (1554+160)-(1704+130) +PSET 4B
"WINDOW

LINE (130,132)-(1494+185) sPSET B
‘DOOR

PSET (134,157 1) ‘DO0OR KNOB
LINE (162+1035)-(160,90) +PSET 'CHIMNEY



85 LINE -(175,80) »PSET ‘CHIMNEY
99 LINE -(175,115) +PSET ‘CHIMNEY
190 * SMOKE STARTS HERE

103 K=167:¥=88 ‘CIRCLE CENTERPOINT

119 SP=@: EP=¢ ‘CIRCLE START AND END

POINT

115 FOR R = 1 TO 5@ STEP .85 'CIRCLE RADIUS

129 EP=EP+.,@2: IF EP » 1 THEN EP = @

125 CIRCLE (X+Rs Y-R)sR+d44+1SPHEP  'SMOKE

130 NEXT R
200 GOTO Zeo

Do-It-Yourself Program 20-1

Delete Line 40 and add Line 65:
G5 PAINT (150,100) 8,8

Do-It-Yourself Program 20-3

S PMODE 11

19 PCLS

15 SCREEN 1.0

20 PCLS 3

25 COLOR 1,0

30 CIRCLE (200:32) 15

335 PAINT (Z200,30) 241

40 LINE (100,185)-(180,125)PSETB
45 LINE -(140,890) +PSET

5@ LINE -(100,125) »PSET

S5 PAINT (135,115) 4,1

60 LINE (110,+160)-(125,130) »PSET+B
B3 LINE (135,160 -(172,130)PSET)B
7@ PSET (134,137,1)

73 PAINT (120:,180),0»1

80 LINE (130.,130)-(149,185)P5ETB
85 LINE (101,135)-(41,185) »PSET B
90 LINE (891,140)-(31,185)P5ET B
895 PAINT (55,138):0.,1

1900 PAINT (89,183) 4,1

195 FOR X = 1 T0O 500: NEXT X

112 PAINT (89,183) 2,1

115 FOR X = 1 TO 5001 NEXT X

120 PAINT (889,135) 4,1

149 GOTO 110

Do-It-Yourself Program 21-1

S PMODE 4.1
19 PCLS
20 SCREEN 1,0

213



32 DRAW "BMBB,1163EZQBEZRSERZQIF2QiBF205
FZO5L403BLADLADBULDIRAQIBRAD S
RADIGZPIBG2ZOIG2QTHZOIBH2QHEPBM128,96;
NUAQiNDADSNEZD INFZOING2OINH2QINLAD R4

49 GOTO 4@

The star you created probably isn’t as fancy as this one because you
haven’t been introduced to B or N yet. But don’t worry; you will be
before the end of the chapter.

Do-It-Yourself Program 21-2

3 PMODE 4,1

18 PCLS

20 SCREEN 141

25 DRAW "BM4D,8O5U403RA2DADLAD "
30 DRAW "BM+20,2035U40 iR4Q5D4DL40"
42 LINE (G?:100)-(42,80) »PSET

50 LINE (G@:G0)-(40,40) +PSET

B2 LINE (100,80)-(80,40) ,PSET

70 LINE (100,120)-(80,82) +PSET

80 GOTO 80

Do-It-Yourself Program 21-3

5 PMODE 441

10 PCLS

20 SCREEN 141

25 DRAW "BM39,50L30D30R3AD3GL3D"

3¢ DRAW "BMO@,50DBOR3QUBR"

40 DRAW "BM1G? ,»50DGOR3ABUBAL3OD3OR30"
50 GOTO 502

Do-Rt-Yourself Program 21-4

3 PMODE 4,1

12 PCLS

20 SCREEN 1,9

30 DRAW "BMAB,8GiNUBDINESE INRBDINFSE S
NDB2INGSB INLBRINHSE"

40 CIRCLE (98,96)+80+1,1,.125,1

50 CIRCLE (135,112),80,1,1+1,.125

B2 LINE (135,110)-(180,187) PSET

70 LINE (135,110)-(213,11@),PSET

80 GOTO 82

Do-It-Yourself Program 21-5

1 CLEAR 250@

3 DIM AZ$(25)

6 FOR LE = @ TO 25
10 READ AZ%(LE)
13 NEXT LE

214



20 NC#="BR4BU7® 'NEXT CHARACTER

25 NL#%="BD4* ‘NEXT LINE

30 BS$="BLO" ‘BACKSPACE

35 HM$="BMD ,10" ‘HOME POSITION

199 CW=6: CH=8 ‘SIZE OF CELL

118 R1=7: R24=191 ‘ROW POSITION

1290 C1=8: C42=247 ‘COLUMN POS

125 CC=1: CL=1 "CURRENT ROW/COL

2908 PMODE 4.1

219 PCLS

220 SCREEN 1,0

225 DRAW "54*

230 DRAW HM%

250 A%=INKEY%$: IF A%=" * THEN 250

262 IF "A":>A%$ OR *Z2" < A% THEN Z390

262 CC=CC+ 1

265 IF CC»27 THEN DRAW NL#$: FOR I =1
DRAW BS$: NEXT I:CC=1: GOTO 270

269 DRAW NC#

279 DRAW AZ%(ASC(A%)-B63)

298 GOTO 250

1900 ' A

1919 DATA BDIDBUANRSUZEIRIFIDG

1829 ' B

1030 DATA ND7RA4FIDIGINLAFIDZGINLABR]

194 * C

1059 DATA BDIDSFIR3EIUIBUZUIHIL3GIBDEBRS

169 * D

187¢ DATA D7R4EIUSHILABD7BRS

1988 ' E

1988 DATA NRSD3NRADARS

1ie@ ' F

1110 DATA NRSD3NR4DABRS

1120 7 G

1132 DATA BDIDSFIR3ELUZNLZBUZUIHIL3G1IBDEBRS

1148 7 H

1159 DATA D7U4RSNU3D4

1168 7 1

1179 DATA RALZD7L2R4BR1

1189 7 J

1190 DATA BDSDIFIR3ELIUGBD7

1200 ' K

121% DATA D7U4ARBEZNULGEFZDZ

1220 ' L

123% DATA D7RS

1240 ' M

1259 DATA ND7RZND7RZD7BR1

1268 ' N

1270 DATA DINDBEIR3FIDG

1280 ' 0

1799 DATA BDIDSFIR3EIUSHIL3GIBDGBRS

138 ' P

1319 DATA ND7RAFIDZCGILABDIBRS

1329 7 0

1330 DATA BDIDSFIR3ZEI1USHIL3GIDABR3FL

1349 ' R

1352 DATA ND7R4FIDIGINLAFIDSG

215



216

1360 ’ 8

1370 DATA BDIDIFIR3FIDZGIL3HIBUSEIRIFIBDB
1380 © 7T

138¢ DATA R4LZD7BR3

1499 U

1412 DATA DBFIR3ELUBBD?Y

1420 U

143¢ DATA DSF2EZUSBD7BRI
1440 W

1430 DATA D7RZNUBR2U7BD7BRI1
1468 X

1470 DATA DIFSDIBLSULESUIBD?
1480 ¥

1490 DATA DEFZND3EZUZBD7BRI
1500 7 2

151

@ DATA RSDIGSDIRS

Do-It-Yourself Program 21-6

3P
1¢
13
20

23
3@
33
40
43
30
35
6o
63
7@
73
8o
B3
1230
g1
85
g6

MODE 3:+1

PCLS

SCREEN 1.9

DRAW "BME@ 170 iUBDINC3DIEBAIFBOINF30 S
DB iLB@sU7BLE@ D706

LINE (30.,17@)-(17@:178) +PSET

LINE (112+17@)-(180,170) +PBET

FOR X = 1 TO 3@@: NEXT X

LINE (10@,178)-(16@,178) :PRESET

LINE (120.,18@)-(12¢.,112) sPSET

LINE (1B2,1¢2@)-(125:11@)+PSET

LINE (160,17@)-(125:182) +PBET

LINE (120+180)-(122,110) ,PRESET

LINE (162,10@)-(125+11@) sPRESET

LINE (1B2+178)-(125,180) :PRESET

DRAW "BM110,1703BU7DIBREQIGESID7OIEZS"
CIRCLE (130,125)+10+,14+,135,.9

DRAW "BMI30,1303D153D1I5CLGELQUIS L1
LINE (120+145)-(120,135) +PSET

FOR X = 1 TD G@: NEXT X

LINE (120+145)-(1290,1353) +PRESET

FOR X = 1 TO 120: NERXT X

190 LINE (120,145)-(110+145),PSET

121

FOR X = 1 TO 6@: NEXT X

i@3 LINE (120,145)-(110,145) +PRESET
186 FOR X = 1 TO B@: NEXT X

118 LINE (12@,145)~-(12@,135) sPSET
120 FOR X = 1 TO 12@: NEXT X

21

CIRCLE (13@,125) 10,1

122 DRAW "BM13@,1303C13iD30iGLOELIQTULS LI
125 DRAW "BM11@,17@iBU7DIBRSQCL S

130

GEZ33iD7@3ERZS "
COLOR 441

135 LINE (120+180)-(120.,110) ,PSET

149

LINE (1604+100)~(125,110) ,PBET

143 LINE (169 ,17@)-(125,180) ,PBET



150 LINE (120,180)-(120,110) ,PRESET
155 LINE (162,100)-(125,110),PRESET
160 LINE (1682+170)-(125,188),PRESET
165 LINE (110,172)-(16@,172)»PSET
170 FOR ¥ = 1 TO S0@: NEXT A

17% GOTO 2@

Do-It-Yourself Program 22-1

5 PCLEAR 4

i@ PMOOE 491

15 PCLS

2¢ SCREEN 1,1

25 DIM W(35,33)

30 K=1@: ¥Y=10

35 DRAW "BM10,103 SZ3 HIQIRISIFLIQIRZ0F F1@3
C103LP@3CI0LISSELQSUZQI04INLBI04INLLZS
DANL1GS D4INL1Z35045NLEB"Y

40 GET (H-H s¥-Y)-(X¥3.5,¥Y%3,35),U,G

45 A%=INKEY4$: IF A%=" " THEN 43 ‘PRESS ANY
KEY TO START

5@ PCLS

55 FOR A = 10 TO 20@ STEP 5

BO PUT (®+AY) - (X+A+35,Y+35) sV,PSET

B5 NEXT A

7@ PCLS

75 GOTO 33

Notice that we've used the options for both GET and PUT. If you want
this rocket to go faster, delete the options and switch to Mode 3.

Do-It-Yourself Program 24-1

3 CLS

1@ FORN=12T0O 1 STEP -1
13 PRINT "NDTE" i N

20 PLAY STR% (N)

?5FOR I=1 TO 500: NEXT I
30 NEXTN

Do-It-Yourself Program 24-2

Change the following lines:

100 A% = "TSICIEIFILIIGIP4SLAICIEFsLLY G

105 B% = "P4IL4SCIESFILZIGIESCIESLLOY

1190 C% = "P43iLA0+3LBIEIGIEIPBIL4ICILBY D3
D+"

115 D¢ = "L43E3C3L230335C3iLB3D33D3LBI0Zs B-

120 E$ = "G3ESLAIGILIIFiP4ILBIGIFIEF"

125 F$ = "L23GSELASCILBI0I0+IEIGILAGAS

Lii03s C*
130 ®$ = "XAS$IMBEINCHIADS INESINFS Y

Add Line 140:
140 PLAY X



218

Do-It-
3

5
10
15

2@
23
3@
49
30
G2
7@
80
g
gz
g3
100
11¢
12¢@
130
140
15¢
160
170
189

Yourself Program 25-1

CLS: PRINT "POSITION TAPE - PRESS PLAY
AND RECORD™
INPUT "PRESS <“ENTER> WHEN READY" 3 R$
OPEN "Q"y #-1, "CHECKS"

CLS: PRINT "INPUT CHECKS - PRESE <3y
WHEN FINISHED"

INPUT "NUMBER "3 N$%

IF N& = "}X" THEN 9@

INPUT "DATE :"i D%

INPUT "PAYABLE TO :"5 P$%

INPUT "ACCOUNT "3 S%

INPUT "AMOUNT %" A

PRINT #-1: N$, D%, P$, 8%, A

GOTO 15

CLOSE #-1

CLS: T =0

INPUT "WHICH ACCOUNT"S Bs

PRINT "REWIND TAPE - PRESS PLAY"

INPUT "PRESS <ENTER> WHEN READY" i R$

OPEN "I"y ®-1, "CHECKS"

IF EOF(-1) THEN 7@

INPUT #-1, N$+ D%+ P$, 5%, A
IF B% = 5% THEN T = T + A
GOTO 130

CLOSE #-1

PRINT "TOTAL SPENT ON -" B$, "IS ¢ T

Do-It-Yourself Program 26-1

10
2@
3@
40
S@
e
7¢
73
80
g¢

DATA 33, 124+ 42, 13+ 15, 273
DATA 25, 30, 33, 27, 14, B

DIM IC12)

FOR X = 1 TO 12

READ I(X

NEXT X

INPUT "ITEM NO." 3 N

IF N > 12 THEN 72

PRINT "INVENTORY FOR ITEM" N "IS" T(N)
GOTO 79

Do-It-Yourself Program 26-2

3

7

12
2@
3@
34
36
40
Se
6@

DIM T(52)
DIM D(32)

FOR X =1 TO 52

TiHY = X

NEXT X

CLS

PRINT @ 181, ",.. DEALING THE CARDS"
FOR X = 1 TO 52

C = RND(EZ)

IF T{C) = @ THEN 5¢



70 0(X) = C

7% GOUND 128 1

8o TH(C) =0

108 NEXT X

119 CLS

120 PRINT @ 107+ "YOUR HANO"
139 PRINT B 167, " *

149 FOR ¥ = 1 70 3

150 PRINT O(X)3

160 NEXT X

Do-It-Yourself Program 27-1

Lines that change items:

119 INPUT "WHICH ITEM NO. OO0 YOU WANT TO
CHANGE" 3 N

115 IF N > 12 THEN 110

120 INPUT "WHAT IS5 THE REPLACEMENT ITEM"3
S$(N)

1390 GOTO 89

The appendix has a sample program that adds and deletes items from
this list.

Do-It Yourself Program 27-2

Lines that change the song lyrics:

119  PRINT
120 INPUT "WHICH LINE 00 YOU WANT TO
REVISE" 3§ L

125 IF L » 4 THEN 120

130 PRINT "TYPE THE REPLACEMENT LINE"
1490 INPUT As(L)

159 GOTO 50

Do-It-Yourself Program 27-3

1 CLEAR 1000

5 0IM A$(50)

7 CLS

19 PRINT "TYPE A PARAGRAPH"

16 @

20 PRINT "PRESS </ WHEN FINISHED"

30 X =1

49 A% = INKEYS$

5@ IF A% = "" THEN 40

50 PRINT A%

7% IF A% w/% THEN 103

80 AE(X A(X) + A%

ag IF A s, OR A% = "PY OOR A% = "1M THEN X
= H+ 1

109 GOTO 40

219



188 PRINT: PRINT

11@ INPUT "(1) PRINT OR (2) REVISE"; R

120 CLS

130 ON R GOSUB 1000, 2000

142 GOTO 1@5

1000 REM PRINT PARAGRAPH

181@ FOR Y = 1 TO X-1

1020 PRINT A%$(Y) 3

1830 NEXT Y

1042 RETURN

2000 REM REVISE PARAGRAPH

2010 FOR Y = 1 T0O X-1

ZOZ@ PRINT ¥ "--" A$(Y)

2030 NEXT Y

2040 INPUT "SENTENCE NUMBER TO REVISE":

2043 IF 5§ » X-1 OR S < 1 THEN 2040

Z08@ PRINT A%$(S)

2060 PRINT "TYPE PHRASE TO DELETE"

2070 INPUT D%

2080 L = LEN(D$)

2080 PRINT “TYPE A REPLACEMENT PHRASE"

2100 INPUT R$

2110 FOR Z = 1 TO LEN(A$(S5))

2120 IF MID$(A%$(S),2+L) = D% THEN Z1Go

2130 NEXT 2

2149 PRINT D% "-- IS NOT IN YOUR SENTENCE"

2130 GOTOD zZoGe

2160 E = Z - 1 + LEN(D%)

2170 A$(5) = LEFT$(A$(5) +Z2-1) + R$ + RIGHT
$(AS(5) ,LEN(A%(S)) -E)

£180 RETURN

Do-It-Yourself Program 27-4

Change this line to print on the printer:
130 PRINT #-2, A$(Y)

Do-It-Yourself Program 28-1

1 CLS: CLEAR 1000: DIM T$(100) s AS(100)
SE(100) s ME(100) s 2(100)
PRINT "PODSITION TAPE -- PRESS PLAY AND

3

RECORD"
4 INPUT "PRESS <ENTER> WHEN READY"5 R$
8 REM
8 REM QUTPUT TO TAPE
i¢ OPEN "D", -1, "BODKS"
15 CLS: PRINT "INPUT YOUR BODKS -~ TYPE <HX:

WHEN FINISHED"
20 INPUT "TITLE"S T3
23 IF T¢ = "XX" THEN 5@
£6 INPUT "AUTHOR": A%

220



28 1
30 P
49 G
50 C
6o C

p
70 1
74 R
76 R
78 B
80 0
83 1
9o I
95 B

NPUT "SUBJECT"3 5%

RINT #-1/+ T%, A%, 5%

07D 15

LOSE #-1

LLS: PRINT "REWIND THE RECORDER AND PRESS
LA\‘I 1

NPUT "PRESS <ENTER> WHEN READY"i R%
EM

EM INPUT FROM TAPE

=1

PEN "I", #-1, "BOOKS"

F EDF(-1) THEN 120

NPUT #-1, T$(B) s AS(B) s S$(B)

=B + 1

GOTO 85

CLOSE #-1

PRINT

INPUT "SORT BY (1) TITLE (2) AUTHOR OR
(3) SUBJECT"3 A

IFA >3 0R A< 1 THEN 500

ON A GOSUB 1000, 2000, 3000

GOSUB 4000

PRINT

FOR ¥ =1 70 B-1

PRINT "TITLE =" T$(Z(X))

PRINT "AUTHOR: " A${Z(X))

PRINT "SUBJECT " S$(Z(X))

NEXT X

PRINT : GOTO 300

REM

REM BUILD M$ ARRAY

FOR X 1 T0 B-1

M$ X)) T$ 00

NEXT X
RETURN
FOR X =
M& (X)) =
NEXT X
RETURN
FOR X
M (X)
NEXT X
RETURN

REM

REM SORT ROUTINE
T

1 T0 B-1
A (X

Ay
e
A,
e

e

+ 1

IF ¥ » B-1 THEN RETURN

IF M$(X) = "ZZ" THEN 4020
FOrR ¥ = 1 70 B-1

IF M$(Y) « M$(X) THEN X = ¥
Z(T)y = ¥

NEXT ¥

T=T+ 1

M$ (X)) = "ZZ2"

GOTO 4010

~

mw oo
L IS

P

221



Do-it-Yourself Program 29-1

13 DIM S$(4) s N$(13) s T(4513)

2@ DATA SPADES, HEARTS: DIAMONDS . CLUBS

30 FOR X =1 T0 4

49 READ 8% (¥

90 NEXT X

G@ DATA ACE 2 3 4y 5 By 7+ 8 9y 10
JACK » QUEEN KING

7¢ FOR X = 1 7O 13

80 READ N# ()

8@ NEXT ¥

100 FOR S = 1 TO 4
110 FOR N = 1 TO 13
12¢ T(SsN) = (5-1) % 13 + N

130 NEXT N:S

140 FOR X = 1 TD 52

150 S = RND(4): N = RND(13)
16@ IF T(SsN) = @ THEN 150
170 T(S54N) = @

180 PRINT N&(N) "-" 5%(S),

198 NEXT X

Do-it-Yourself Program 30-1

3 CLS

19 FOR NUMBER =1 TO 1@
20 PRINT NUMBER " 2

38 NEXT MUMBER

Do-It-Yourself Program 30-2

5 CLS

18 FOR NUMBER = 1@¢ TO 1 STEP -19
2@ PRINT SOR(NUMBER)

32 NEXT NUMBER

Do-It-Yourself Program 30-3

5 CLS

12 FOR A = -180 TO 179 STEP 10

15 RD=A/37,29577951

3¢ CP=COS(RD)*14+16.,5 ‘C0S POSITION
40 SP=SIN(RD)#14+16,5 ‘SIN POSITION
3@ IF SP<{=CP THEN 70

6@ PRINT TAB(CP)3 "C"3iTAB(SP)Y§{"S": GOTO 89
7¢ PRINT TAB(SP)I"S"3iTAB(CP)"C"

80 NEXT A

98 GOTO 10

222



Do-It-Yourself Program 30-4

a.) 7TLOG (1eed)
6.91075e279
b.) PLOG(74.,98653)
4,3173081
o) 7 LOG(3,354283)
+ 21023863

Do-It-Yourself Program 30-5

3 CLS

1@ INPUT "WHAT NUMBER "3 NUMBER

15 H=LOG(NUMBER)/LOG(1@)

2@ PRINT "THE LOG BASE 1@ OF" NUMBER "IG" X
25 GOTO 1@

a.) 7.00890077 E -11

Note: The log of 1 in any base is 0. The answer the com-
puter displays is the result of a round-off error. All computers
produce this answer.

t‘o) 1
oc.) 2
ds) 2.69897001
es) =1

f.) 3.00043408

Do-It-Yourself Program 30-6

1,) DEFFNR(Y) = ¥*57,29577951
2.)

5 CLS

10 DEF FNC () = ¥ 4 3

2@ INPUT "WHAT NUMBER DO YOU WANT TO CUBE" ¥
30 X=FNC (})

4@ PRINT ¥

S@ FOR A = 1 TO 75

55 NEXT A

5@ GOTO 2¢

Do-It-Yourself Program 31-1

3 CLS

10 X = STRING$(3@,"-")

2¢ FOR X = B4 70O 416 STEP &4
3¢ PRINT @ Xy X

49 PRINT @ 97, "BILL"

41 PRINT @ 161, "SUE"

42 PRINT B ZE5, "JON"

43 PRINT @ 289, "MARY"

5S¢ PRINT B 3B, "MATH"

51 PRINT B 45, "SPELL"

223



32 PRINT @ 33, "READ"
BE@ PRINT @ 183, X"
Bl PRINT B 175, "y#
B2 PRINT @ 231 *¥"
B3 PRINT @ 311, "yxn
78 NEXT X

B@ GOTO g¢

Do-It-Yourself Program 31-2

5 CLS
1@ X% = "ABCDEB"
20 Y$ = "B

30 PRINT INSTROX$:Y$)5 INSTR(4:M$,Y¥%)

Do-It-Yourself Program 31-3

153 ¥ =1

28 W% = "JAMES SMITH,BS5SOHARISON »DALLASTY*
73002:SUE SIM,RT3,GRAVIOSMO*ES084: LYDIA
LONG +34458MITHST »ASBURYNJI*32004:BOB
STRONG,BOX G0 sEDMONTONALBERTACA: TIMMY
DUNTON, PIERMONTMO*B5078"

SO P = INSTRIX X$:A%): PRINT P

6@ IF P < » @ THEN X = P+1: GOTO S5¢

Do-lt-Yourself Program 31-4

12 DIM TBL$(26)

2@ FOR I=0 TO 25

30 READ TBL&(I):NEXT I

49 PRINT "ENTER OLD-STYLE PHONE NUMBER™
S0 INPUT N%

B@ IF N$=" " THEN 49

7¢ FOR I=1 TO LEN(NS)

B2 CH=MID$(N$,I,1)

90 IF C$<"A" OR C$ >"Z" THEN 170
1280 C4=TB$(ASC(C%)-B5)

119 MID$(N%,I)-C%

120 NEXT 1

130 PRINT "NEW-STYLE = "j§ N%

140 REM ABCDEF

15@ DATA "2"’"2"’"2"’"3"’”3"’"3"
160 REM G H I JK L

17@ DATA "a”,"a"’1(413’115"’"5"’"5"
IBOREMMNOPGQR

150 DATA "B"’"8","8"’”7"?"{:\3”’"7"
200 REM 5 T U W W X

210 DATA "7”’"B"’"B"’"B"’HBH’HBH
220 REM Y 7

230 DATA "gr,ngn

224



Do-It-Yourself Program 32-1

19 A% = "$sus xuuann, 8 DOLLARS"

Do-It-Yourself Program 32-2

3 CLS

1@ INPUT "INCOME"S I

15 INPUT "EXPENSES"IE

20N = I-E ‘NET GAIN OR LOSS

25 A% = "$buuni, ua”

30 B% = "$$uuuy, uu"

35 L% = "+$$uuus, 48"

49 CLS: PRINT B 33 "MONTHLY ECONOMIC STATUS
REPORT"

45 PRINT @ 96+ STRINGS (32:"-")

59 PRINT @ 160, "INCOME"

55 PRINT @ 256+ "EXPENSES®

B@ PRINT B 352, "TOTAL (+) OR (-)"

B5 PRINT @ 349 STRINGS(1D,"-")

79 PRINT @ 180+ USING A% 1

75 PRINT B 276 USING B%s E

g0 PRINT @ 371+ USING C%5 N

99 GOTO 90

Try modifying this program to keep track of your electricity bills and to
store the information on a yearly basis.

Do-It-Yourself Program 32-3

3 CLS

1@ PRINT "THIS" TAB(POS(@)+d)"I8"s

20 PRINT TAB(PDS(@)+4)"EVENLY"
TAB(PDS(@)+4) "SPACED"

225



SAMPLE PROGRAMS

Sample Program #1

Type this program and save it on cassette, but don’t open it (or run it)
until Christmas!

3 CLS

12 PRINT B B4, STRINGS (32,"%")

13 PRINT @ 352 STRINGS (32,"#%")

2@ PRINT @ 199, "J0OY TO THE WORLD"

23 FOR X = 1 TO 1@@@: NEXT X

3¢ CLS

35 PRINT @ B4, "JOY TO THE WORLD™"

4¢ PRINT @ 96, "THE LORD IS COME™"

45 PRINT @ 128 "LET EARTH RECEIVE HER KING"
3@ PRINT @ 160+ "LET EVERY HEART™

33 PRINT @ 192 "PREPARE HIM ROOM™"

6@ PRINT @ 224, "AND HEAVEN AND NATURE SING"
65 PRINT @ 256 "AND HEAVEN AND NATURE SING™"
7@ PRINT @ 288, "AND HEAVEN AND HEAVEN AND

NATURE SING"

100 A$="T435 03§ LZ3CiL4502iBILBIAIL2, 5GiLAS
FILZSESDS "

103 Be="L2, CiP325LA5GILZSAILAIP3ZIALE, IBS
P3Z5L4BI0O35LL, 0"

110 Ce="LACCI025L4iBSAIGILA, IGILBIFILASES
03ic"

115 D$="033iL45Ci025BIAIGIP32iL4,5GiLBIFLAS
EiP3EEIP32IEIP3ZIEIPI2IEIPIZILBIEF

120 E$="L2,5GiLBIFSESL4IDIP32IDIP32iDiP323
LBIDSESLZ,SFILBSESD"

123 F$="0235L43iC035L23iCi025L45A5L 4, 35GiLBIF
Lds ESFSL2SESDsSLLCY

130 X$ = "XASIXBE i XCH IXDSIXES INFH "

135 PLAY X

200 PMODE 3.1

283 PCLS 4

210 SCREEN 1.2

215 COLOR 144

2@ LINE (90,96)-(118,2B) +PSET

223 LINE (146+96)-~(1184+2B6) sPSET

230 LINE (90,96)-(146+9B) sPSET

235 DRAW "BMI11Z,9B635D15iR1@ULE"

240 LINE (@,112)-(255,9B) sPSET

245 PAINT (238,8%) 4141

258 X = RND(285)
253 Y = RND(115)
260 A = RND(4)

263 PSET (XY :A): GOTO 250

Sample Program #?2

1 “%%% BACK TO BACH #x%»

2 I

226



5 CLS

1@ PRINT @ 96+ STRING$(32,"*")

20 PRINT @ 320, STRINGH(3Z,"*")

25 PRINT @ 201, "BACK TO BACH"

49 FOR X = 1 TO 100@: NEXT X

55 A% = "TBI02iL235GIL4SCIDIEIFIL2IGICIPLBS
Cll

BQ Re="LZ3AILASFIGIAIBIN3ILZICI02CIPIBICS
FiL43GsFSEsD"

BS Ce="LZ3ESLASFIEIDICILZI013iBI025L435C3D3
EsC"

70 DH="LZ3EILL13DILZIGILAICIDIEIFILZIGICS
P1GiC"

75 E$="L23AILASFIGIAIBIO3IL2ICI0ZICIP1IBICS
FiL43iGsFSED"

80 F$="LZ3ESLASFIEIDICIDIEILEIFI01iBIL10Z
Cll

B3 X$="XASIHBSIHCHIXDEIHESIHNF$ "

90 PLAY X%

Sample Program #3

1 7 ***MEXICAN HAT DANCE***

5 CLS

1% PRINT @ 9G,5TRINGH (32 ,"*")

20 PRINT @ 320:STRINGH(32,"+")

30 PRINT 8 199,"MEXICAN HAT DANCE"

49 FOR X = 1 TO S@00: NEXT X

125 REM S TARTTUNE

130 0%="U153T33023:"

135 P$="_LBCFPBCFPBCFP4PB"

14¢ Q$="CFGFEPBFGPA4PB"

145 K$="H0$IXP$INQs 3"

130 PLAY X

155 R$="CEPBCEPBCEP4PS

160 S%="CEFEDPBEFP4P8

163 ¥$="XO% I XREINEHE "

170 PLAY Y8

180 REM 2ND TIME

185 0%= "U253T3:01"

1990 PLAY X%

185 0$="T7T3i04"

197 S$="CEFEDPBEFO4CO3AF"

200 PLAY Y3

210 A$="03COZ2BO3COZAA~-AFEFCP4"

229 B$="CO1BOZ2CDEFGAB-0O3CEG"

225 0$="UL1535T45"

230 Z$="X043iXAsiKB%"

235 PLAY 0%

249 C$="03B-AB-GF+FEG=ECEG"

245 D$="04L1GCP1BCPIBCPIBLEBDCO3B-AGFPA"

250 E$="XO0$3XCE3XDs "

255 PLAY F3

260 F$="(2L16GP1BGP1IGGP1GDP1IBDPIBDPIGEPIGFP
16LBELIGGPIBOLIGPIGLBG

227



263 GH="U1502L16GP1BGPIBGPIGDPIGDPIBDPIGER
16FP1IBLBECOLIGC"
270 He="XF$iXG$ "
289 PLAY H$
283 I$="XF¢i"
280 PLAY I
293 Je="02L16GP1IBGPIBGPIGAPIGGPIGGPIGAPIGBP
1603L4CP8"
300 PLAY "XJsi"
31¢ K$="04L 1DL4DEDELBDEDEL 1GDEDEDEDEL
3Z2DEDEDEDEDEDEDEDELBADEDEDE
DEDEDEDEDEDEDEDEDEL3ZDD-CO3BB-AA-
GF+FEE-DD-LA4DD-"
320 PLAY "XK$i"
33¢ M$="TSLBDOZBB-BGF+GL4ADPB"
349 N$="L8DC+DEF+GABO3COZL4APE"
35¢ AA$="03LBCOZBOECOZAG+AF+FF+L4DPE"
37¢ BB$="03LBDDDEDCOZBAD3DEDCOZBA"
38¢ CCs="0ZDEDCO1BAD4DEDDEDDEDDEF+
GDO3BGT4DOZBGT3DOIT2BLAPZVI3ALIGY
420 PLAY "XM$IXN$ i XAASIXBBS i HLC$ "
300 PMODE 41
303 FOR Y = 1 TO B
310 SCREEN 1,@
329 PCLS
550 CIRCLE (128:9B):50+1+.2,.,85,.67
S6@ CIRCLE (128+96) 254,142 +.541
370 LINE (193,96)-(151,96) +PSET
6O@ PMODE 4,1
619 SCREEN 1490
B2® PCLS
B3¢ CIRCLE (128473145031 4+.2+.85,.67
" BB@ CIRCLE (128+75)+14+24.5+1
B7@0 LINE (1@5,73)-(1514+75)PSET
B73 NEXT v
BB IF ¥ » 5 THEN G9¢
683 GOTO 500
69Y CLS
700 PRINT @ 2
710 FOR X = 1
72¢ GOTO 5

27 "NOMW THAT'S A HOT TamMmaLE"
TO BR@:NEXT X

Sample Program #4

1 7 ***BUFFALO GALS***
5 CLS
19 PRINT @ B4y STRING$ (32 "%")

13 PRINT @ 384, STRING$(32,"%")
2@ PRINT @ 2@1, "BUFFALD GALS"

23 FOR X = 1 TO 130@: NEXT X: CLS

3@ PRINT @ 32, "A5 I WAS WALKING DOWN THE
STREET™

35 PRINT @ G4, "DOWN THE STREET s DOWN THE
STREET™

4¢ PRINT @ 96 "A PRETTY GAL I HAPPENED"

228



45 PRINT @ 133, "TO MEET™

5¢ PRINT @ 160, "JUST AS LOVELY AB"

55 PRINT @ 197, "THE MORNING DEW"

G0 PRINT @ 224, "BUFFALO GALS WON'T YOU"
65 PRINT 8 261, "COME OUT TONIGHT"

70 PRINT @ 288, "COME OUT TONIGHT.,"

75 PRINT @ 320, "COME OUT TONIGHT "

8¢ PRINT B 352, "BUFFALDO GALS WON'T YOU®
85 PRINT B 391, "COME OUT TONIGHT"

9¢ PRINT B 416, "AND DANCE IN THE"

9% PRINT @ 453, "LIGHT OF THE MOON."

100 A$="TA3iCIETP3ZIEIFIP3R2IFIATGILISE"

105 B$="L43GiFiL25DILAFATGIECH"

110 C$="LASEIP32IETFiP3ZIFILBIAIP3Z25AILA;S
GIEIO35LBICIP325Cs"

115 D$="023B3P32iBiGiP3235GiLAFi013BI0Z3
L15CsP1GBS"

120 E$="LB3iCIiP32iCiLAIP32ICIEILBIGIP3ZiGS
ATP3ZiATLASGILZTE"

125 F$="LB3iGiP323GiLAFIL2ZiDILAFAILEGS
P323iGiL2SE"

130 G$="LBiCiPB4ICiPB4IL4ICIEILBIGIP32iGS
LA45ATLBIGIP323GILASETO33CH"

135 H$="023BsLB8iGiP323GIFIP32iFiL45DILZ, 5
cs

140 ¥$ = "XASIHBEINCEINDE INES IXFEIXGET XH$ "

145 PLAY X%

150 CLS

155 PRINT B 230 "THAT'S ALL FOLKS"

Sample Program #5

‘xa¥x IN-QUT *%%

I

1
S PMODE 341
1
1

# PCLS3
5 SCREEN 1.@
20 FOR I = 3 70 7
25 FOR J = 2706
30 FOR & = @ TO 3
35 FOR R = @ TO 3
49 COLOR R85
45 A = P:B=255:C=0:D=191

5@ LINE (ACY-(B,D) +PSETHB
55 A=A+J:B=B-J:C=C+I1:D=D-1
B@ IF A<2%5 AND C<181 THEN 5@
B3 NEXT R

70 NEXT &

75 NEXT J»1

80 GOTO 3@

Sample Program #6
1 “#%% DRAWING TRIANGLES *¥%#*
1¢ CLS: CLEAR
75 PRINT BYG»STRINGH(3Z2,"%™")

229



230

8@ PRINT @ 288, STRINGH(32,"%")

10@

47¢@

soe
Si@
S2@

53¢
532
533
335
337
s4¢@

PRINT @ 160+ "THIS PROGRAM DRAWS THE
TRIANGLE YOU SPECIFY AND THEN CALCULATES
ITS AREA"

FOR X=1 TO 2200: NEXT: CLS

CLS:PRINT"FOR 3 SIDES TYPE, S55 (0-100)"
PRINT"FOR 2 SIDES (1-100) AND 1| ANGLE (@-
90) TYPE, 5AS"

PRINT "FOR 1 SIDE (0-B@) AND 2 ANGLES (0-
90) TYPE, ASA"

INPUT A$: IF A$="5AS" GOTO 300

IF A$="ASA" GOTOD 400

555

PRINT "ENTER 3 SIDES,» (LONGEST SIDE
FIRST)"

INPUT L1,L2,L3

IF L23L1 OR L3>L1 THEN PRINT "***LONGEST
FIRST PLEASE . . .": PRINT: GOTO 210
S=(L1+L2+L3) /2

IF §<{=L1 THEN PRINT "#*%*NDT A
TRIANGLE***": PRINT: GOTD 210
Y3=2#SOR(S*(S-L2) % (S-L1)%(5-L3)) /L1
A=Y3/LZ: A=ATN(A/SOR(-A*A+1))
X3=COB(A) *L2

AR=(L1%Y3) /2

GOTO 490

'SAS

PRINT "ENTER 2 SIDES AND 1 ANGLE: AB,AC,
THETA (LARGEST SIDE FIRST)"

INPUT L14LE,T

T=(T*3,14159)/180

Y3=LZ*¥SIN(T)

H3=COS(T)*L2

AR=(L1%Y3)/2: GOTO 490

‘ASA

PRINT "ENTER 2 ANGLES AND 1 SIDE: THETAL
THETAZ » AB"

INPUT T1,T2,L2

T1=(T1%3,14159)/180: T2=(TZ*3,14159)/
180

Y3=LZ*¥SIN(TL)

B1=COS(T1)*LZ

BZ=Y3/TAN(TZ)

L1=B1+B2: X3=B1l: IF L23L1 THEN X=L1:
Li=LZ: LZ=X

AR=(LZ*Y3) /2

CLS:PMODE4 1:PCLS:SCREEN 141

F=1

UC=(3,14159 % (L1*F-X3%F)*(Y3%F)"2)/3
US=(3.14159 % (X3*F) % (V3%F)"2)/3:
UT=UC+yg

S1=Y3/X3: S2=Y3/(X3-L1)

IF INT(X3) = @ THEN 1100

IF INT(X3)=INT(L1) THEN 1000

IF X3>L1 THEN 1199

IF X3=L2 THEN 1000

FOR Y=20 TO L1%2+20 STEP 2:



PSET(Y :¥3+5:3): NEX

55@ FOR X=0 TO X

531 POSET(X#Z2+20,51%(X3-X)+5:+3): NEXT

SB® FOR X=X3 TO L1: PBET(X*#2+20¥3+{(82% (L1-
KI+3)s8): NEXT

SHQ FOR X=1 TO G@d: NEXT X

B1% PRINT @ 130:"AREA="3ARI" SG, UNITS"3

B39 PRINT B352, "+"3: INPUT "TO RUN AGAIN.
PRESS <1» <«ENTER:"3 BG: IF BG=1 THEN 12¢

gd¢ sTOP: GOTO 12

1000 FOR ¥Y=5 TO Y3+5: PSET(X3%2+20,Y,4):
NEXT: GOTO 340

113@ FOR ¥=3 TO ¥3+5: PSET(Z20Y3): NEXT:
GOTO S4¢

120@ FOR X=L1 TO X3: PSET{X*#24Z2¢ Y3+ (8Z% (L1~
KI+5) .58y NEXT: GOTO 34¢

1300 FOR X=X3 T0O @: PSET(A*#2+20,Y3+(51%(2-
Xy+3) 4y NEXT: GOTO 54¢

Sample Program #7

1 7##% PROJECTION STUDIES *#%%

S PMODE 4.1

1@ PCLS

15 SCREEN 1.0

20 DRAW "BMS® SORGADIGNLZQD2BLZONUZGLIZGNU
2pL20UZ@NRZOULE" 'TOP VIEH

25 DRAW"BMS0, l0QRZONDEZORZONDZORZODZGNL 20D
1PLBOUIBNRZBUZ®" ‘FRONT VIEMW

30 DRAKW "BM15¢ 1 00R3QDIGLIDUIONEZRUZO"
'SIDE VIEMW

35 / OBLIGQUE VIEW_LINES 402-G¢

49 DRAW "BM13¢:SQUSELISRIPBFZ2BDIONRSLZOH
25U19

4% DRAW"BM1S®,SOUSFBUIBRISHBFBLISFENRLIED

15FBNDIPELIONRICHSE

LINE (173,32)-(200,33) ,PSET

LINE -(200.80)PSET

LINE (1B87:88)-0183,486) sPSET

GOTO 63

Gy g1 i
NS S

Sample Program #8

‘##% UNFOLDING BOX **%

PCLEAR 8

@ PMODE 341

3 PCLS

? COLOR 6.5

S DRAW"BM1@@® +120U3ONRIPELISGERIGNG1I3D30GLE
NU3eL3e"

30 PAINT (185,853) 846

35 PAINT (135,80) 846

[ I A e B 1 I S )

231



49 PAINT (11@.65):8.06

45 SOREEN 141

3@ FOR X = 1 TO B@@: NEXT X

11¢ PMODE 3,5

112 PLCLS

115 COLOR 65

122 DRAKW "BM120 1 20U3PNRICEZOR3GGIBDIGNL
3OF20L30HE®

125 LINE (10@.,100)-(7¢,95) +PSET

138 LINE -(72:63) +PSET

135 LINE -(102.,70) ,PSET

14¢ LINE (70,95)-(40,65) ,PESET 4B

143 LINE (1304+102)-(160,95)+PSET

150 LINE ~(1B@:63) +PSET

155 LINE -(130.:7¢) sPSET

16¢ PAINT (895:+853):8:6

163 PAINT (105:83) 8,6

17¢ PAINT (135,:83),8.6

173 PAINT (45:B5).,8.6

189 PAINT (115463186

185 PAINT (125:114) 846

19¢ SCREEN 1,1

183 FOR ¥ = 1 TO BO@: NEXT X

20¢ GOTO 10

Sample Program #9

1 7%%% S5INE HAVE *%%

3 PMODE 4,1

1@ PCLS

15 S5CREEN 1.1

20 LINE (@.86)-(2535.,86) »PSET
23 PI=3.14139

30 Al=-4%PI

33 AZ=dx*PI

49 N=18¢

43 R=5¢

3¢ H=(AZ-A1}/N

35 F=233/(A2-061)

B¢ FOR I =A1 TO A2 STEP X
B3 HK=I*F

70 Y=R*¥SIN(I)

75 PSBET ((X+140) ,(B@+Y) 1)
8@ NEXT I

8¢ GOTO 9¢

Sample Program #10

1 “#%% SIN/COS *##+

o

12 PMODE 4.1
20 PCLS

232



39 SCREEN 190

49 LINE (127,5)-(127+185) +PSET
SO LINE (74+8958)-(247,:93),PBET
60 FOR XSCALE=7 TO 247 STEP 2¢
79 PRESET (XSCALE,935)

80 NEXT XSCALE

99 FOR YSCALE=3 TO 183 STEP 1¢
19¢ PRESET(127 ¥YGCALE)

119 NEXT YSCALE

130 FOR X=-18@ TO 189 STEP 1.5
14@ AX=X/57.,295378

145 XP=KXK/1.5+127

150 Fi=-(SIN(AX)*90)+93

160 FZ2=-(COS{(AX)*80)+93

179 PSET(XPsF1s1): PBET(KXPFZ.:1)
180 NEXT X

1899 GOTO 19¢

Sample Program #11

1
10
15
20

23

3¢
38
40
30
33
50
63

‘%% RANDOM GRAPHICS *%x#

PMODE 31

PCLS

SCREEN 1,1

F =RND(4):B=RND(8): IF B=F OR (B-4=F)
THEN 23

COLOR FsB:PCLS B: FOR L =@ TO 3
LINE -(RND{255) yRND(181)) +PSET
CIRCLE (RND(255)RNDC1913) RND(102)
NEXT: FOR P=0 TO 10

PAINT (RND(Z235),,RND{191)) RND (4)+F
NEXT: FORH =1 T0 7

FOR T=0 TO B@@: NEXT T: GOTO 1@

Sample Program #12

‘¥ ¥NAVAHO BLANKET*%#
PMODE 3.1

PCLS 4

SCREEN 1.0

COLOR 1:+0

FOR ¥ = @ TO 2535 BTEP 18

oy =

Y = 3@-0Y

LINE (H+100-Y¥)-{(¥+10,100-0%Y) +PSET

LINE(H »120+Y) - (X+10,120+0Y) »PSET
NEXT

FOrR C = 2 70 8

PAINT (@110} 041

NEXT

GOTO 35

233



Sample Program #13

1 '%%% PAINTED LACE #*#%

3 PMODE 31

12 PCLS

Z0 SCREEN 11

3¢ DRAW"BME@ ,18QUGOBUZQUGARGOBRZAREADG0
BOZODGOLBOBLZOLG®

49 DRAW"BMS® .1 8RUGCORAOBRECREBPDZOBLEZOLED
BLEGLZODZOR2OBREPRZOUZD

S0 DRAW"BMSQ » 18ARGOUBOBUZGUARBLAGBD2R020
BDBADZORZOUBOBUZOUZOLZQ

@ DRAW"BMSQ,180UCOBULPBRZORGOBRZORZGUZD
LZ2@0BOBOZ@DEOR20

70 DRAW"BM3O ,180BREBAULOBUZDPURBS

80 DRAW"BMS® ,18¢BUBORBOBRZORA

¢ PAINT (85:128).,6.:8

85 PAINT (95.:78),6+8

87 PAINT (135,95).6.8

98 PAINT (13%+145).,6.8

898 PAINT (128+18%5),7:8

1@ PAINT (75:150) 748

181 PAINT (162,150} :7.8

102 PAINT (73:751,7 48

123 PAINT (1B@ 733 +7 .8

184 PAINT (12¢,118),7.8

110 FOR X =1 TO G@@: NEXT ¥

20@ GOTO S

Sample Program #14

1 “%#*% DRAWING BOARD #xx

3 CLS

5 PRINT @128 8STRING$(3Z,"%"):PRINTE Z88,

STRING$ (32" ")

18 PRINT @ 200, "DRAWING BOARD"

13 FOR X = 1 TO B@@: NEXT X

20 CLS

25 PRINT @ 86, "PRESS {f} FOR UPs <DOWN
ARROW: FOR OOWN: <BACKSPACE:» FOR LEFT
“TAB> FOR RIGHT» <A FOR SOUTHWEST» <G>
FOR SOUTHEAST s <W> FOR NORTHEAST, <@ FOR
NORTHWEST"

3¢ PRINT @ 288,"PRESS <1 FOR INVISIBLE
LINEs €2%,43>, OR <4 FOR DIFFERENT
COLORED VISIBLE LINESs PRESS </ TO
CHANGE COLOR-SET"

3% PRINT @ 448, "PRESS <SPACEBAR: TO PAUSE"

49 FOR ¥=1 TO 480@: NEXT X

43 CC=4: TG=@

3¢ PMOOE 3:1

35 PCLS

234



6@ SCREEN 1,TG

70 KX=128:Y=86:X1=0:Y1=0

B0 U$s=""": D$=CHR$(10): We=CHR$(B):
E4=CHR$(9)

99 NWs="0Q": NE$="W": BHWE="A": BE$="G"

100 C1$="1":C24="2":C3%="3": Cd$="4"

1190 As=INKEY%

12¢ IF A$=U% THEN YI=-1:XI=0: GOTO 240

130 IF A$=D% THEN YI=1:X1=0: GOTO 240

149 IF A$=W$ THEN XI=-1:YI=0: GOTO 240

150 IF A$=E%$ THEN XI=1:¥I=0: GOTO 249

160 IF A$=NE$ THEN XI=1:¥I=-1: GOTO Z4e

170 IF A$=NW$ THEN XI=-1:¥1=-1:G0TO0 240

180 IF A$=5E4% THEN XI=1:¥I=1:G0T0 249

190 IF As=58Ws THEN XI=-1:¥I=1:G0T0 240

200 IF Cis<=A% AND A%<=Cd% THEN CC=ASC(A%) -
48: GOTOD 249

210 IF As="/" THEN TG=(NOT TG AND 1) OR (TG
AND NOT 1): GOTO 240

220 SCREEN 1 TG

230 IF A$=" " THEN XI=0: YI=0

240 K=X+XI:¥=Y+YI:IF X<{@ THEN X=

250 IF X>253 THEN X=235

260 IF Y<@ THEN Y=0

270 IF ¥>191 THEN Y =191

273 IF CC=1 THEN PSET{(X ¥ 3)

280 PSET (XY .,CC)

299 GOTO 110

Sample Program #15

1 “%%% INTERACTING LINES *%%
3 CLS

28 C=0C+1

23 IFC >»8THENC =5

30 COLOR C»1

30 PRINT "TYPE X0Y0"3

B0 INPUT X0,Y0

7% PRINT "TYPE X1,¥1"3

80 INPUT Xi.Y1

9@ PMODE 3.1

g3 PCLS

100 SCREEN 1.1

1190 LINE (X@,Y0)-(X1,Y1)P5ET
115 FOR X = 1 T0O 2000: NEXT X
129 GOTO 20

Sample Program #16

1 “*%% RANDDM LINES *¥#*

L

20 PMODE 441
25 PCLS

235



30 SCREEN 1.1

35 X = RND(255): ¥ = RND(191)
4@ LINE -(Xs¥) sPSET

43 FOR X = 1 TO 2@@: NEXT X
5@ GOTO 35

Sample Program #17

1 “#»*% B-LEAF CLOVER *%x

-3 7

5 PCLEAR 8

1@ PMODE 441
13 PCLS

20 SCREEN 1,0

253 PI=3.141598

30 A1=0: AZ=2%P]

33 N=36@:4=5@

4@ X = (A2-A1)/N

45 FOR I = A1 TO AZ STEP X
SOR = A % COS (4«1

53 X =R *GINC(I)

6@ ¥ =Rk * COS(I)

65 PSET(128 + X,89B6+Y3)
7@ NEXT I

73 GOTO 25

Sample Program #18

1 “%»*% TIMEBOMB *x#

19 PMODE 4, 1

15 PCLS

20 SCREEN 141

23 CIRCLE (128,86) .80

30 CIRCLE (128,8B6) ,90

35 PAINT (@.,0) .5

49 FOR T=3® TO -3@ STEP -1

43 A=(Z*3.1415)*T/B@

S0 LINE (128,98)-(75%#5IN(A)+1284+75%
COS(A)+896) sPSET

S5 SOUND Q%2+1,20/(Q+1)+1

B@ LINE (12B,9B)-(75%5IN(A)+128,75%
COS(A)+8B) yPRESET

G5 W=6@-2%T:FOR ¥=0 TO @ STEP -1:NEXT

70 NEXT

73 CLS

8@ PCLS

85 PRINT @ 237.,"BOOM! ™

9@ SOUND 1,3@

95 PMODE 441

1909 SCREEN 1,1

193 FOR I =2 TO 200 STEP 2

119 CIRCLE (128B,86) 1

113 NEXT I

236



120
125
130
135
149
145
150
135

SCREEN 1,1

FOR X =2 TO Z2@® STEP 2
CIRCLE (128+88) X443
NEXT X

FOR I = 2 TO 209 STEP 2
CIRCLE (128+986) +1:3:.5
NEXT 1

GOTO 155

Sample Program #19

1 7%%% ROTATING FAN **x

bl s

5 PCLEAR 8
o0 GOTO GO0

BO LINE ((255-3) +(191-¥))-{¥,Y)PSET
Bl J = J+12IF JxA THEN J=0:A=RND(52)

B3 RETURN

0@
6521
6oZ
603
504
625
61
612
615
B2¢
623
625
630
633
B35
640
643
645
65¢
BG6@
670
680
690
700
71@

REM ROTATING FAN
FOR I =1 70 5 STEP 4
PMODE 31

PCLS

SCREEN 1,02
A=25:1K=0: Y=0: J=0

FOR X =@ TO 254

COLOR X/32+1,5

GOSUB B@: NEXT X

FOR ¥ =0 TO 190

COLOR Y/24+1 45

GOSUB B@®: NEXT Y

FOR X = 255 TO 1 STEP -1
COLOR K/32+1,5

GOSUB B@: NEXT X

FOR ¥ = 191 TO 1 STEP -1
COLOR ¥/24+41,45

GOSUB BG@: NEXT Y

NEXT I

FOR I =1 TO 5 STEP 4
PMODE 3,1

SCREEN 1,0

FOR T = 1 T0 3@: NEXT T
NEXT I
GOTO GBo

Sample Program #20

1 "#%*WALKING TRIANGLES #*%*

19
15
20
30
49
Y7y
a5
g0

FOR A = 9@ TO @ STEP -4
Si1=A%*9: 52=191
A3=A/57.,28578
Hi=0:¥1=181

H2=81+X1: YZ=Y¥1

H3=X1+52#COS(A3):¥3=Y1-52%5IN(A3)

GOsSuB 10090
NEXT A

237



238

89
1@
19
19
19
19
1@
10

GOTO 99

2@ PMODE 4,1

23 PCLS

1¢ SCREEN 1.0

20 LINE (X1¥1)-{(X2,¥2)PBET
30 LINE -(X3,¥3)PEET

43 LINE -(X1%¥1)PSET

B2 RETURN

Sample Program #21

1
10
20
30

35
4@
5@
Ga
7@

8@
g9
19

11
20

21

g
s

23

%% COUNTING %%+
CLS
CLEAR 100@

PRINT "WHERE DO YOU WANT TO START
COUNTING?"

INPUT A%

P=LEN({A%)

PRINT:PRINT A%

C=VAL(MID$(A® P 1))+1

MS$=A%: MR$=RIGHT$(STR$(C)s1): PS=P:

GOSUB 20@: A%$=MS%

IF C<1® THEN 40

P=P-1

@ IF P=¢0 THEN IF LEN(A%)=255 THEN PRINT
"OUVERFLOW": END: ELSE As="1"+A%: GOTOD 40

2 GOTO G

? LS=LEN(ME®)

@ IF L8< » LEN(MR$)+LS-1 OR PS<1 THEN STOP

@ MS$=LEFT$(MS5%,PS-1)+MR$+RIGHT$ (MS%:L5-
PS5}

? RETURN

Inventory Shopping List

3 CLEAR Z20@@: DIM S$(100)

1@
20
3@
40
50
Ga
7@
80
9@
1@
11
12
13
14

i35
9@
19

REM INVENTORY /SHOPPING LIST

CLS

PRINT @ 71, "DO YOU WANT TO--"

PRINT @ 134, "(1) INPUT ITEMSE"

PRINT @ 166y "(2) REPLACE ITEMS"
PRINT @ 198, "(3) ADD 7O THE LIST"
PRINT @ 23@, "(4) DELETE ITEMSE"
PRINT @ 2B2, "{(35) PRINT ALL ITEMS"
PRINT @ 294, "(B) SAVE ITEMS ON TAPE"

@ PRINT @ 326, "(7) LOAD ITEMS FROM TAPE"
? PRINT @ 3853, "(1-7)"1

? INPUT M

@ IFM< ®0RM:>7 THEN 10

# ON M GOSUB 1000, 2000, 1020, 3000, 4200,

S0ed, GOOO
2 GOTO 1@
@ REM
20 REM INPUT/ADD ITEMS



ie1e
igz2e
le3e

iode
1243
195
106@
107¢
199
2000
20035
2010
2020

2030
2ede
2050
2060
2909
3020
30035
3010
320

3030
3835
3e4e
3259
3268
3072
3080
3099
319
3500
4000
4919
4020
4030
4040
4050
4oG6@
4e7@
4909
000
S0l
Se2e
Se30@
sede
Sese
S06e
S07@
S9008@
S09¢
S1ee
3800
Ceew

Y =1

CLS: PRINT @ 8, "INPUT/ADD ITEMS"
PRINT @ 34+ "PRESS {ENTER>» WHEN
FINISHED"®

PRINT: PRINT "ITEM" Y3

INPUT S%(Y)

IF 8${(Y) = " " THEN RETURN

¥ =¥ + 1

GOTO 1040

REM

REM REPLACE ITEMB

N =@

CLS: PRINT @ 9+ "REPLACE ITEMS®
PRINT @ 34, "PRESS <ENTER> WHEN
FINISHED"

PRINT: INPUT “ITEM NO., TO REPLACE"3 N
IF N = @ THEN RETURN

INPUT "REPLACEMENT ITEM" i B%(N)

GOTO Zeeo

REM

REM DELETE ITEMS
N =2

CLS: PRINT @ 9, "DELETE ITEMGS™
PRINT @ 34, "PRESS <ENTER» WHEN
FINISHED"

PRINT: INPUT “ITEM TO DELETE": N
IF N »Y¥-1 THEN 303¢

IF N = @ THEN RETURN

FOR X = N TO ¥-2

SH(X) = GH(X+1)

NEXT X

S (X)) = " ¢

\ll - \ll - 1

GOTO 3ve0

REM

REM PRINT ITEMS
FOR ¥ = 1 TO ¥-1 BTEP 13
FOR Z = ¥ 70 X+14

PRINT 235 S&(Z)

NEXT Z

INPUT "PRESS <ENTER:> TO CONTINUE": C%
NEXT X

RETURN

REM

REM SAVE ITEMS ON TAPE

CLS: PRINT @ 135, "SAVE ITEMS ON TAPE"
PRINT @ 234, "POSITION TAPE"

PRINT @ 284, "PRESS PLAY AND RECORD®
PRINT B 388, "PRESS <ENTER:» WHEN READY"
INPUT R%

OPEN "0", #-1 "LISBT"

FOR ¥ = 1 70 Y-1

PRINT #-1, S&(X

NEXT X

CLOSE #-1: RETURN

REM

REM LOAD ITEMS FROM TAPE

239



240

Speed Reading

10 REM
2¢ CLS:
MINUTE"

30

INPUT

49 FOR X
6@ READ A% : PRINT B 256, A%

78 FOR ¥ = 1 TO (360/WPM) * 460 : NEXT Y
80 REM

80 NEXT X :

100
110
120
130
149
150
160
170
180
19¢
200
210
229
230
249
250
260
270
28¢
29¢
300
310
320

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

SPEED READING

PRINT @ 32, "HOW MANY WORDS PER

"DO YOU READ" 3 WPHM

= 1 T0 23

¥ LODP SETS LINES/MIN

END

SCARLETT OHARA WAS NOT BEAUTIFUL
BUT MEN SELDOM REALIZED IT WHEN
CAUGHT BY HER OWN CHARM AS THE
TARLETON TWINS WERE, IN HER FACE
WERE TOO SHARPLY BLENDED

THE DELICATE FEATURES OF HER
"MOTHER » A COAST ARISTOCRAT OF"
"FRENCH DESCENT : AND THE HEAUY™
ONES OF HER FLORID IRISH FATHER
"BUT IT WAS AN ARRESTING FACE »"
"POINTED OF CHIN, SQUARE OF JAW"
HER EYES WERE PALE GREEN
"WITHOUT A TOUCH OF HAZEL "
STARRED WITH BRISTLY BLACK
LASHES AND SLIGHTLY TILTED

"THE ENDS: ABOVE THEM, HER THICK"
"BLACK BROWS SLANTED UPWARDS "
CUTTING A STARTLING DBLIQUE LINE
IN HER MAGNOLIA-WHITE SKIN--THAT
"SKIN 50 PRIZED BY SOUTHERN WOMEN"
AND S0 CAREFULLY GUARDED WITH
"BONNETS: VEILS: AND MITTENS"
AGAINST HOT GEORGIA SUNS

Memory Test

This program uses an array to test both yours and your computer’s

memory:

3 DIM A7)

i@
13

PRINT
PRIN

20 FOR X
30 ALK

4@

50 NEX

B¢ FOR X
79 CLS
8¢ FOR X

99

PRINT

"MEMORIZE THESE NUMBERS"
"YOU HAVE 1@ SECONDS"

=1 710 7

RND(100)

PRINT ACK)

\s
"

= 1 TD 460 * 19 & NEXT X

=1 7107

"WHAT WAS NUMBER" X

100 INPUT R
119 IF A(X) = R THEN PRINT "CORRECT" ELSE

iz2¢

PRINT

NEX

"WRONG - IT HAS™ A(X)

\s
"



ASCII Character Codes

These are the ASCIl codes for each of the characters on your keyboard.
The first column is the character; the second is the code in decimal no-
tation; and the third converts the code to a hexadecimal (16-based

number).
CHARACTER DECIMAL HEXADECIMAL
CODE CODE

32 20
! 33 21
" 34 22
# 35 23
$ 36 24
% 37 25
& 38 26
! 39 27
( 40 28
) 41 29
* 42 2A
+ 43 2B
, 44 2C
- 45 2D
. 46 2E
/ 47 2F
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39
: 58 3A
; 59 3B
< 60 3C
= 61 3D
> 62 3E
¢ 63 3F
@ 64 40
A 65 41
B 66 42
C 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48
| 73 49
} 74 4A
K 75 4B
L 76 4C
M 77 4D
N 78 4E

241




242

CHARACTER DECIMAL HEXADECIMAL

CODE CODE

0 79 4F

P 80 50

Q 81 51

R 82 52

5 83 53

T 84 54

§] 85 55

Y 86 56

W 87 57

X 88 58

Y 89 59

z 90 5A

@ 94 5E
o> 10 OA
() 8 08
=)+ 9 09

03 03
12 0C
13 oD

*if shifted, the codes for these characters are as follows: (CLEAR) is 92
(hex 5C); (A is 95 (hex 5F); (1) is 91 (hex 5B); is 21 (hex 15);
and is 93 (hex 5D).

Lowercase Codes

These are the ASCIHl codes for lowercase letters. You can produce these
characters by pressing the and (0) keys simultaneously to get
into an upper- lowercase mode. The lowercase letters will appear on
your screen in reversed colors (green with a black background).

CHARACTER DECIMAL HEXADECIMAL
CODE CODE
a 97 61
b 98 62
c 99 63
d 100 64
e 101 65
f 102 66
g 103 67
h 104 68
i 105 69
j 106 6A
k 107 6B
l 108 6C
m 109 6D
n 110 6F
0 111 6F
p 112 70
q 113 71



CHARACTER DECIMAL HEXADECIMAL

CODE CODE
r 114 72
s 115 73
t 116 74
u 117 75
v 118 76
w 119 77
X 120 78
y 121 79
z 122 7A

243



GRAPHICS SCREEN WORKSHEET (128 x 192)

Bt
[223
L&l
a5
L
61
2G4
i
Eia)
art
1
243
it
41
fiis
L:13Y
(483
R
¥O}
(a1
96
o8
%
il
o8
i
2L
@9
9
08
95
5
ay
bid
o
9e
e
14
vz
oz
k4
zi
B
v
-0

o8t
» oL
i om

3

LTS

S

LY

Na

@o

o

s

N

o~

ow

-o

on=

PN

EI

N

e

oa=

P

Na—

LR

oo

PN

N

2NN

EYPN

Ama

[

con

soN

won

s

LI

NuN

@mwn

aan

man

NoN

244



GRAPHICS SCREEN WORKSHEET (256 x 192)

e

245

)
y 4 6 12 16 20 24 28 32 36 &) 44 S0 52 A6 66 54 88 72 78 B0 §4 88 92 96 100 104 19 112 VI8 120 124 29 157 Y34 feq 144 14E 52 156 160 ‘64 168 172 (75 90 64 BR 192 196 200 20 708 202 216 220 2p4 228 202 II6 0 244 248 252
i ¥

HES fr

R S A |




GRAPHICS SCREEN WORKSHEET (128 x 96)

a8
8l
a8t
R4
E23%
awt
oL
481
251
Pl
ari
r¥i
s
864
6
B
oL
4%
81
(413
ot
05
o031
&
6
28
b
o
84
(42
a8
»9
o8
9%
k23
o
iid
o
%€
24
ki1
¥T
0%
gt
(43
]
¥
<0

.

@w

an

@

o

e

e

2o

w e

T3

@w

oo

o

@

o~

£

oo

s

@

no

Fo

T

P

@o-

-

Bt

@

P

R

-

L2

L

e

on-

LY

EX

ama

Y

mo-

-

on-

T

N

e

N

mo-

oan

san

@on

e

N

Y

LIS

N

LI

E¥SY

PSS

man

[N

246



o¢

14

92

SET/RESET WORKSHEET (64 x 32)

e

e

0C

81

9t

143

[43

0L

0

- ©

oON

NN

N

oN

N

nNw

- w

D W

0w

(=2

L

[~ e

-3

oo

-]

o

N

247



11414

8vp

iy

vee

(A3

oze

PRINT @ WORKSHEET (32 x 16)

88¢

98¢

vee

261

[1:78

748

96

¥9

4

NN

w N

L3 )

on

- N

o0 n

@wn

oW

bk G2

248



Extended Color BASIC Colors

Here are the codes for the nine colors you can create on your
computer:

Code Color

Black
Green
Yellow
Blue

Red

Buff
Cyan
Magenta
Orange

CON OV UL o W N - O

The color may vary in shade from these, depending on your TV. Color O
{black) is actually an absence of color.

COLOR-SET
Color |Two-Color Four-Color
Mode Set | Combination Combination

4 0] Black/Green —

1 Black/Buff —
3 0 —_ Green/Yellow/Blue/Red

1 — Buff/Cyan/Magenta/Orange
2 0 Black/Green —

1 Black/Buff —
1 0 — Green/Yeilow/Blue/Red

1 — Buff/Cyan/Magenta/Orange
0 0 Black/Green —

1 Black/Buff —_

MUSICAL NOTE/NUMBER

Number Note

1 C
C#/D-
D
E-/D#
E/F-
F/E#
F#/G-
G
G#/A-
A
A#/B-
B

_4_._4
Do woNouewN

Note: PLAY does not recognize the notation B# or C~. Use the num-
bers 1 and 12 respectively or substitute C for B# and B for C—. A ?FC
Error occurs if you try to use either of these notations.

249



Extended Color Basic
Error Messages

250

Abbreviation
/0

AO

BS

CN

DD

DN

DS

FC

FD

FM

Explanation

Division by Zero. It’'s impossible to divide
by zero, even for computers.

Atternpt to Open a file that is already open.
If you press RESET during cassette /O,
vou'll get this message. Turn the computer
off and on again.

Bad Subscript. The subscripts in an array
are out of range. For example, if you have
A(12) in your program without a preceding
DIM line that dimensions array A for 12 or
more elements, you'll get this error. Use
DIM to dimension the array.

Can't Continue. If you use the CONT com-
mand and you're at the END of program or
in other non-continue situations, you'll get
this error.

Attempt to Redimension an Array. You can
dimenension an array only once. For exam-
ple, you can’t have DIM A(12) and DIM
A(50) in the same program.

Device Number Error. You may use only
three device numbers with OPEN, CLOSE,
PRINT, or INPUT—0, -1, or -2. If you use
another number, vou'll get this error.

Direct Statement. The data file contains a
direct statement. This error can be caused
by attempting to CLOAD a data file.

Hlegal Function Call. This error occurs
when you use a parameter (number or vari-
able) with a BASIC word that is out of
range. For example, PLAY'":"” causes this
error.

Bad File Data. This error occurs when you
PRINT data to a file or INPUT data from the
file, using the wrong type of variable for the
corresponding data. For example, INPUT
#-1,A, when the data in the file is a string,
causes this error.

Bad File Mode. This error occurs when you
try to INPUT data from a file OPEN for
OUTPUT(O), or PRINT data into a file
OPEN for INPUT().



Abbreviation

iD

IE

LS

NF

NO

oD

OM

0s

oV
RG

SN

5T

™

UL

Explanation

lilegai Direct Statement. For example, you
can use INPUT only as a line in the pro-
gram, not as a command line.

input past End of file. Use EOF to check io
see when you've reached the end of the file.
When you have, CLOSE the file.

input/Output Error. This error is often
caused by trying to input a program or data
file from a bad tape.

String too long. A string may contain only
255 characters.

NEXT without FOR. NEXT is being used
without a FOR statement. This error also oc-
curs when you have the NEXT lines re-
versed in a nested loop.

File Not Open. You can’t input or output
data to a file until you have OPENed it.

Out of Data. A READ was executed with
insufficient DATA for it to READ. A DATA
statement may have been left out of the
program.

Out of Memory. All available memory has
been used or reserved.

Out of String Space. There is not enough
space in memory to do your string opera-
tions. You may be able to CLEAR more
space.

Overflow. The number is too large for the
computer to handle. (ABS{(X)>1E38)

RETURN without GOSUB. A RETURN line
was encountered without a prior GOSUB.

Syntax Error. This could result from a mis-
spelled command, incorrect punctuation,
open parentheses, or an illegal character.
Retype the program line or command.

String formula too complex. A string opera-
tion was too complex to handle. Break it
into shorter steps.

Type Mismatch. This occurs when you try
to assign numeric data to a string variable
(A$=23) or string data to a numeric variable
(A="DATA"}.

Undefined Line. The program contains a
GOTO, GOSUB, or other branching line
that asks the computer to go to a nonexist-
ing line number.

251



A Formula in Hand Is Worth
Two in the Book . ..

(WD0T1-(X)907 = Z 10  (MX)DOT = 7

(WOOT+(X)D07 = 710 (xex)DOT = 7
XIO0T4A = 710 (Aox)o0] =7
XVt =710 (x-)oy =7

(Axjoy = 710 fofxoy) =7

<Z 4l e(Z)5Ds —g~) = gx
<Z 3 (ZH0s+g~) = 1x
Oyvp-gog = 7

0 = D+Xg+ToXY WIH

SO
[}

((vs~ShEINIYE = vy

(SHOS ~ SIES — SIYS —5)JeDs = ¥
ZOS+E5+vS) = §

i

i

(EHOV + VY INVIHOS + SIS —vS) = 4
(2O ~wWINYL = A w3y

((vv)50008+88+2 2208 ~ 2= 88)40S = vs

/

(@Y INISI Y YINIS) = ve

({08 = S)ES - SMYS ~ ShSIHDS = vy
eHOS+E5+vS) = §

(Y INIS-Z)HOVINISHEVINIS 25V S = vIgy

[sueipes 01 Hy
PUE G 'Y 1BALOD LAY (DY + gY) — 091 = vy

Qv +gY +y = 14U

: A
Amo__sxuoﬁn ﬂmé._

A Boj+x Boj = Ax Boj

x 60j-A = x Boy

Bz
0B~ GA Fq-

0 = 0+Xq+ xB

82-5
T%L:@Emw =y

§
B—sig—si(e ;mm\(: y

O+g+ejE, =8
D48

»pn\.fm m
5T (O-v) ue

(O+v)y, uep-

AO Yy uB) o+
S0

(O~v)iue;  o-g

¥ 500-00Z -0+ gA = &

10 $00-0GZ— 0+ .9 = &

g uis uis
G- 2 e 9
W s Y ouIs e

{o-s)(q-s)e~s)s,

(o+q+8) = s

= Baly

Dus-gus g
O+8)-081 =y
O+8-+V = 081

suonenby
oreiqeby

SuoiENDY
oneipeny

8jbuy ue Joj 8Os
'SOPIS B8] UBAID

sjuebuey Jo me

SBUISOD JO MET

S8UIg JO MBT

0 pue q ‘B sepig vann

o pue
g saibuy ‘e 8pis vann
BOLY 10} SNOS

8jbuel e jo seaibag [E10]

uswsiels olsvg

SeIRULIOY piepurg

Aueny

AB

3
/

=
<L
NS
R
O <
<o
353
wy
£ W
2.8 3
aw§
Oamlu
GO W
oS
T O < m
WO Uy < <
[ I
< m
Seoue
DU PP
NN T T
<
L]
(&)
1]

AC

Angle C

*AC

AA

SB

252



Derived Functions

2L =L+ X)D0T = DOHLOODHY INFONVLIOD
OIMOgYAdAH FSHIANI
L+ (1 +X0HDS.00NDSND0T = (XHOSODUY INVYD3AS0O

21108HIdAH ISHIANI

O+ {1+ XX - )H0S)DOT = (XIHOISHYY

INWVOES OIM0gHIdAH ISHIANI

20— X+ 1107 = (XNHNYLOHY

INJONVL
O108d3dAH ISHIANI

{1 X XIHDS +XD0T = (XIHSOODHY

ANISOO O1108d3dAH FSHIANI

(1 +XX)HDS + X80T = XOHNISDHY

INIS O1108H3dAH 3SHIANI

L+ 2,00 )dX3 — (X)X (X~ )dX3 = GOHLOD

INIONVLOO O1T08HIdAH

((X-)dX3 ~ 00dXI)e = (XIHDSD INVD3S00 O10gHadAH

(= )dX3+ XdX3)2 = (XIHO3S 1INVDIS O110gdadAH

L+ 2= )X+ 0E@AX —)dXT — = (XIHNVL INIONYL D1109HIdAH

X —)dX3 + (X)dx3) = (OHSOD 3INISOD D11080dAH

2/((X=)dX3 —~(X)dX3) = (X)HNIS INIS D110g9Y3IdAH

8048t +(XINLY — = (X)LODOHY INIONVLOD FSHIANI

9045 1. {1 —(XINDS) + ({1 - X.X)HOS/LNLY = (X)DSD0dV LINVD3SOD ISHIANI
8025 1.1~ BONDS) + (1 — X.X)HOSINLY = (X)03SDHY LINVO3S ISHIANI
80461+ (1 +X.X —)HOS/XINLY ~ = (X)SO00"Y ANISOO ISYIANI

({1 + XX —)HOS/XINLY = (X)NISOUY 3NIS ISHIANI

(XNVL/E = (X)10D INIONVLOD

(ONIS/E = (X)08D INVO3S00

(X)s0o/t = (X)D3s INVD3s

‘sueipes ul sy x uonaung

‘SUOII2UNZ JISVE 10]00) PApUa)X3 JO Swa) Ul passaidx3 uonoung

253



254

Valid Input Ranges

inverse Sine -1<<X<1
inverse Cosine -1<<X<1
inverse Secant X<-or X>1
inverse Cosecant X<-1 or X>1
inverse Hyper. Cosine X>1

inverse Hyper. Tangent X*X<1
inverse Hyper. Secant 0<X<1
inverse Hyper. Cosecant X<>0
Inverse Hyper. Cotangent X*X>1

Certain special values are mathematically undefined, but our functions

may provide invalid values:

TAN and SEC of 90 and 270 degrees
COT and SCS of 0 and 180 degrees

For example, TAN(1.5708) returns a value but TAN(90*.01745329) re-

turns a DIVISION BY ZERO error. 90*.01745329 = 1.5708

Other values that are not available from these functions are:

ARCSIN(-1) = -PI/2
ARCSIN(T) = PI2
ARCCOS(-1) = PI
ARCCOS(1) = 0
ARCSEC(-1) = -PI
ARCSEC(1 = 0
ARCCSC(-1) = -PI/2
ARCCSC(1) = PI/2

Please note that the above information may not be exhaustive.

Decimal Address Contents Hex Address

- 0-1023 . System Use 1 0-3FF
255 Direct Page RAM e raa - 2

-.1028 - Extended Page RAM ' GFF
1024-1535 Text Screen Memory 400-5FF

3 Graphic Screen Memory :

"~ 1538-3071 = Page 1 : ; 600-BFF

- 3072-4607 Page2 e CO00-11FF
4608-6143 - Page 3 1200-17FF
6144-7679 Page 4 1800-1DFF
7680-9215. Page 5 ~ 1E00-23FF
9216-2559 " Page6 2400-9FF
2560-12287 Page 7 2ADO-2FFF
12288-13823 - Page8 - 3000-35FF

' Program and Variable ‘

13824-16383 Storage 3600-3FFF

. 32788-40959 Extended Color BASIC 8000-9FFF
40960-49151 Color BASIC AQ00-BFFF

- 49152-85279 Cartridge Memory ~ COOO-FEFE
65280-65535 Input/Output FF00-FFFF




Color Computer Line
Printer Variables

Hexadecimal Decimal Initial Value
Variable Address Address Hex Dec
LPTBTD Baud
MSB 0095 149 00 0
LSB 0096 150 57 87
LPTLND Line Delay
MSB 0097 151 00 0
LSB 0098 152 01 1
LPTCFW Comma Field Width
0099 I 153 [ 10 | 16
LPTLCF Last Comma Field
009A l 154 | 70 | 112
LPTWID Line Printer Width
0098 | 155 | 84 | 132
LPTPOS
I 009C I 156 [ o0 | o0

Your computer’s software uses the following initial conditions:

The baud rate is 600

The printer width is 132 columns

The printer generates a busy output when not ready

The printer automatically executes a carriage return at 132
columns.

The RS-232 Interface uses a four-pin DIN connector. A diagram of the
pin out is shown in your introduction manual.

Pin 4 is the computer output to the printer. Pin 3 is ground. Pin 1 is not
used for a printer. Pin 2 should be connected to the busy output (or sta-
tus line) of the printer. If your printer does not provide a status indica-
tion, then this line must be connected to a positive voltage of greater
than 3 volts. This tells the computer that the printer is ready at all times.
In addition, the line delay variable should be set to the proper value.

The following list of alternate values for the line printer variables is pro-
vided as an aid in interfacing nonstandard printers.

Decimal Value
Baud Rate (msb,Isb) Hexadecimal Value
120 baud 458 (1 and 202) 01CA
300 baud 180 00BE
600 baud 87 0057
1200 baud 41 0029
2400 baud 18 0012

255



258

Exit Conditions
None

CHROUT = [A002]
Outputs a Character to Device

CHROUT outputs a character to the device specified by the contents of
6F (DEVNUM).

DEVNUM = -2 (printer)

DEVNUM = 0 (screen)

Entry Conditions
On entry, the character to be output is in A.

Exit Conditions
All registers except CC are preserved.

CSRDON = [A004]
Starts Cassette

CSRDON starts the cassette and gets into bit sync for reading.

Entry Conditions
None

Exit Conditions
FIRQ and IRO are masked. U and Y are preserved. All others are
modified.

GIVABF =[B4F4]
Passes parameter to BASIC

Entry Conditions
D = parameter

Exit Conditions
USR variable = parameter

INTCNV = [B3ED]
Passes parameter from BASIC

Entry Conditions
USR argument = parameter

Exit Conditions
D = parameter

JOYIN = [A00A]
Samples Joystick Pots

JOYIN samples all four joystick pots and stores their values in POTVAL
through POTVAL + 3.

Left Joystick

Up/Down 15A
Right/Left 158
Right Joystick
Up/Down 15C
Right/Left 15D

For Up/Down, the minimum value = UP
For Right/Left, the minimum value = LEFT.

Entry Conditions
None



ROM Routines

The Color BASIC ROM contains many subroutines that can be called by
a machine-language program. Each subroutine will be described in the
following format:

NAME — Entry address
Operation Performed
Entry Condition

Exit Condition

Note: The subroutine NAME is only for reference. It is not
recognized by the Color Computer. The entry address is
given in hexadecimal form; you must use an indirect jump to
this address. Entry and Exit Conditions are given for ma-
chine-language programs.

BLKIN = [A006]
Reads a Block from Cassette

Entry Conditions
Cassette must be on and in bit sync (see CSRDON). CBUFAD contains

the buffer address.

Exit Conditions
BLKTYP which is located at 7C, contains the block type:

0 = File Header
1 = Data
FF = End of File
BLKLEN, located at 7D, contains the number of data bytes in the block
(0-255).
Z* = 1,A = CSRERR = 0 (if no errors).
Z =0, A = CSRERR = 1 (if a checksum error occurs).
Z =0, A = CSRERR = 2 (if a memory error occurs).

Note: CSRERR = 81
Unless a memory error occurs, X = CBUFAD + BLKEN. If a memory
error occurs, X points to beyond the bad address. Interrupts are masked.
U and Y are preserved, all other modified.

*Z is a flag in the Condition Code (CC) register.

BLKOUT = [A008]
Writes a Block to Cassette

Entry Conditions

The tape should be up to speed and a leader of hex 55s should have
been written if this is the first block to be written after a motor-on.
CBUFAD, located at 7E, contains the buffer address.

BLKTYP located at 7C, contains the block type.

BLKLEN, located at 7D, contains the number of data bytes.

Exit Conditions

Interrupts are masked.

X = CBUFAD + BLKLEN.

All registers are modified.

WRTLDR = [A00C]

Turns the Cassette On and Writes a Leader

Entry Conditions
None

257



258

Exit Conditions
None

CHROUT = [A002]

Outputs a Character to Device

CHROUT outputs a character to the device specified by the contents of
6F (DEVNUM).

DEVNUM = -2 (printer)

DEVNUM = 0 (screen)

Entry Conditions
On entry, the character to be output is in A.

Exit Conditions
All registers except CC are preserved.

CSRDON = [A004]
Starts Cassette

CSRDON starts the cassette and gets into bit sync for reading.

Entry Conditions
None

Exit Conditions
FIRQ and IRO are masked. U and Y are preserved. All others are

modified.

GIVABF =[B4F4]
Passes parameter to BASIC

Entry Conditions
D = parameter

Exit Conditions
USR variable = parameter

INTCNV = [B3ED]
Passes parameter from BASIC

Entry Conditions
USR argument = parameter

Exit Conditions
D = parameter

JOYIN = [AQ0A]
Samples Joystick Pots

JOYIN samples all four joystick pots and stores their values in POTVAL
through POTVAL + 3.

Left Joystick
Up/Down 15A
Right/Left 158

Right Joystick
Up/Down 15C
Right/Left 15D

For Up/Down, the minimum value = UP
For Right/Left, the minimum value = LEFT.

Entry Conditions
None



Exit Conditions
Y is preserved. All others are modified.

POLCAT = [A000]
Polls Keyboard for a Character

Entry Conditions
None

Exit Conditions
Z =1, A = 0 (if no key seen).
Z = 0, A = key code, (if key is seen).

B and X are preserved. All others are modified.

259



260

BASIC SUMMARY

STATEMENTS

BASIC statements are commands that tell your computer to do some ac-
tion, such as drawing a circle on the screen. Use BASIC statements as
lines in your program.

AUDIO  Connects or disconnects cassette output to TV speaker.

CIRCLE (x,y),r.c,hw,start.end Draws a circle with center at point (x,y),
radius r, specified color c, height/width ratio (hw) of 0-4. Circle
can start and end at specified point (0-1).

CLEAR n,h  Reserves n bytes of string storage space. Erases variables. h
specifies highest BASIC address.

CLOAD Loads specified program file from cassette. If filename is not
specified, first file encountered is loaded. Filename can be a maxi-
mum of 8 characters.

CLOADM Loads machine-language program cassette. You may specify
an offset address to add to the loading address.

CLOSE#DEV  Closes access to specified file. If you do not specify de-
vice, all open files are closed.

CLS ¢ Clears display to specified color c. If you do not specify color,
green is used.

COLOR (foreground,background) Sets foreground and background
color.

CONT Continues program execution after you have pressed (BREAK
or used the STOP statement.

CSAVE Saves program on cassette (program name can be 8 characters
or fewer). If you specify A, program is saved in ASCII format.

CSAVEM name, start, end, transfer Saves a machine-language file on
cassette,

DATE Stores data in your program. Use READ to assign data to
variables.

DEF FN  Defines numeric function.

DEFUSR n  Defines entry point for USR function n.n=0-9.
DEL Deletes program lines.

DIM  Dimensions one or more arrays.

DRAW  Draws a line beginning at specified starting point of specified
length of specified color. Also draws to scale, draws blank lines,
draws nonupdated lines, and executes substrings. If you do not
specify starting point, last DRAW position or (128,96) is used.

EDIT Lets you edit a program line.



END Ends program.

EXEC (address) Transfers control to machine-language programs at
specified address. If you omit address, control is transferred to ad-
dress set in last CLOADM.

FOR ... TO STEP/NEXT Creates a loop in program that the computer
must repeat from the first number to the last number you specify.
Use STEP to specify how much to increment the number each
time through the loop. If you omit STEP, the computer uses 1.

GET (start)-(end),destination,G Reads the graphic contents of a rectan-
gle into an array for future use by PUT.

GOSUB Calls a subroutine beginning at specified line number.
GOTO Jumps to specified line number.

IF test THEN ... action 1 ELSE, action 2 Performs a test. If it is
true, the computer executes action]. If false, the computer exe-
cutes action 2.

INPUT Causes the computer to stop and await input from the
keyboard.

INPUT#-1 Input data from cassette.

INSTR (position, search, target) Searches for the first occurrence of
target string in search string beginning at position. Returns the po-
sition at which the match is found.

LET Assigns value to variable (optional).
LIST Lists (displays) specified line(s) or entire program on screen.
LLIST Lists specified program line(s) or entire program to printer.

LINE (x1,y1)-(x2,y2), PSET or PRESET,BF Draws a line from (xI,y1) to
(x2,y2). If you omit (x1,y1), the last end point or (128,96) is used.
PSET selects foreground color, and PRESET selects background
color. B draws a box with (x1,y1) and (x2,y2) as the opposing cor-
ners. BF fills in the box with foreground color.

LINE INPUT Inputs line form keyboard.

MIDS$ (oldstr, position, length) Replaces a portion of oldstr with an-
other string.

MOTOR Turns cassette ON or OFFE.

NEW Erases everything in memory.

ON...GOSUB Multiway branch to call specified subroutines.
ON . .. GOTO Multiway branch to specified lines.

OPEN m,#dev,f Opens specified file {f) for data transmission (m) to
specified device (dev). m may be | (Input) or O (Output). dev may
be #0 (screen or keyboard), #-1 (cassette), or #-2 (printer).

PAINT (x,y),c,b Paints graphic screen starting at point (x,y) with speci-
fied color (c) and stopping at border (b) of specified color.

PCLEAR n Reserves n number of 1.5 K graphics memory pages.

PCLS ¢ Clears screen with specified color (c). If you omit color code,
current background color is used.

261



262

PCOPY Copy graphics from source page to destination page.

PLAY Plays music of specified note (A-G or 1-12), octave (O), volume
(V), note-length (L), tempo(T), pause (P), and allows execution of
substrings. Also sharps (# or +) and flats (-).

PMODE mode, start-page Selects resolution and first memory page.

POKE (location, value) Puts value (0-255) into specified memory
location.

PRESET Resets a point to background color.

PRINT Prints (displays) specified message or number on TV screen.
PRINT #-1 Writes data to cassette.

PRINT #-2  Prints an item or list of items on the printer.

PRINT TAB  Moves the cursor to specified column position.

PRINT USING  Prints numbers in specified format.

PRINT @ scr pos Prints specified message at specified text screen
position.

PSET (x,y,c) Sets a specified point (x,y) to specified color (c). If you
omit ¢, foreground is used.

PUT (start)-(end), source, action Stores graphics from source onto
start/end rectangle on the screen. (Array rectangle size must match
GET rectangle size.)

READ Reads the next item in DATA line and assigns it to specified
variable.

REM Lets you insert comment in program line. The computer ignores
everything after REM.

RENUM newline, startline, increment Lets you renumber program
lines.

RESET (x,y) Resets a point.

RESTORE Sets the computer’s pointer back to first item on the first
DATA line.

RETURN  Returns the computer from subroutine to the BASIC word fol-
lowing GOSUB.

RUN Executes a program.

SCREEN screen-type, color-set Selects either graphics (1) or text (0)
screen and color-set (0 or 1).

SET (x,y,c) Sets a dot at specified text screen position to specified
color.

SKIPF  Skips to next program on cassette tape or to end of specified
program.

SOUND tone, duration Sounds specified tone for specified duration.
STOP  Stops execution of a program.
TROFF Turns off program tracer.

TRON Turns on program tracer.



FUNCTIONS

BASIC functions are built-in subroutines that perform some kind of com-
putation on data, such as computing the square root of a number. Use
BASIC functions as data within your program lines.

ABS (numeric) Computes absolute value.

ASC (str) Returns ASCII code of first character of specified string.
ATN (numeric) Returns arctangent in radians.

CHR$ (code) Returns character for ASCIl, control, or graphics code.
COS (numeric) Returns cosine of an angle given in radians.

EOF (dev) Returns FALSE = 0 if there is more data; TRUE = —1 if
end of file has been read.

EXP (numeric) Returns natural exponential of number (e number).
HEX$ (numeric) Computes hexadecimal value. PRINT HEX$ (30)

INKEY$ Checks the keyboard and returns the key being pressed (if
any).

INT (numeric) Converts a number to an integer.

JOYSTK (j) Returns the horizontal or vertical coordinate (j) of the left
or right joystick:
0 = horizontal, left joystick

1 = vertical, left joystick
2 = horizontal, right joystick
3 = vertical, right joystick

LEN (str) Returns the length of a string.
LOG (numeric) Returns natural logarithm,

MEM  Finds the amount of free memory.

MID$ (strpos,dength) Returns a substring of another string starting at
pos. If you omit length, the entire string right of position is returned.

PEEK (mem loc) Returns the contents of specified memory location.

POINT (x,¥) Tests whether specified graphics cell is on or off. x (hori-
zontal)=0~63; y (vertical)=0-31. The value returned is —1 if the
cell is in a text character mode; O if it is off, or the color code if it is
on. See CLS for color codes.

POS (dev) Returns current print position.

PPOINT (x,y) Tests whether specified graphics cell is on or off and re-
turns color code of specified cell.

RIGHTS (strJength) Returns right portion of string.

RND (n) Generates a ""random’’ number between 1 and nif n > 1, or
between O and 1 if n = 0.

SGN (numeric) Returns sign of specified numeric expression:
~1=negative; 0=0; 1=positive.

SIN (numeric) Returns sine of angle given in radians.

263




264

STRINGS (length, code, or string) Returns a string of characters (of
specified length) specified by ASCII code or by the first character of
the string.

STR$ (numeric) Converts a numeric expression to a string.
SQR (numeric) Returns the square root of a number.

TAN (numeric) Returns tangent of angle given in radians.
TIMER  Returns contents or lets you set timer (0-65535).
USRn (numeric) Calls your machine-language subroutine.
VAL (str) Converts a string to a number.

VARPTR (var) Returns addresses of pointer to the specified variable.

OPERATORS

BASIC operators perform some kind of operation on data, such as add-
ing two numbers.

Exponentiation

-y Unary negative, positive

*/ Multiplication, division

+ - Addition and concatenation, subtraction
<>, =,<=,>=,<> Relational tests

NOT

AND

OR



INDEX

$ See STRINGS

; See print

, See print

:, separating BASIC statements 61
+, addition 15

4+, concatenation 65
—, subtraction 15

=, multiplication 15

/, division 15

(D) exponentiation 174
26

@HIFD(@) 18,158
@HIFD(D 55

(SPACEBAR) 53
?/0 ERROR 16

2LS ERROR 66

?0S ERROR 65

SN ERROR 16

{TM ERROR 20

ABS 79

absolute motion 117

alphabetizing See sorting

analyzing 162

AND

operator 78

PUT parameter 125

angle 199

Answers to Do-lt-Yourself Programs  207-25

arc See CIRCLE

arctangent  See ATN

arrays

multidimensional 162

numeric 150

string 155

ASCIl character codes 241

ATN 175

B See DRAW

BF See DRAW

background color 92

BASIC summary 260-62

black-on-green 18

Bull’s Eye, program 108

Card Dealing, program 153, 166

change, edit key 54

CIRCLE 107

CLEAR 66

CLOSE 145

CLS 16

COLOR 92

color See also CIRCLE, COLOR, DRAW, PAINT,
PSET

codes 16

modes 99

sets 96

foreground and background 92

reference 249

concatenate {+) 65

constants 195

CONT 75 :

correcting mistakes See errors

COos 174
cosine See COS
Craps, program 46
Crooked Line, program 93
current graphics screen 103
DATA 48
data
numeric v string 15, 20-21
sorting 159
storing on tape 145
debugging 193
DEFFN 193
DEFUSR 198
degrees 177
DEL 57
delete
edit key 54
program lines 26, 57
derived functions 253
device See OPEN
DIM 124
division (/) 15
division error 16
Do-lt-Yourself Programs
answers - 207-25
Bull’'s Eye 108
Card Dealing 153, 166
Craps 46
Crooked Line 93
House 93, 108, 110, 113
Ice Cube 117
Inventory Shopping List 238
Lightning 106
Mailing List 183
Memory Test 240
Rolling Dice 45
Russian Roulette 44
Sine Waves 174
Speed Reading 240
Star 116
Triangle 172
Typing Test 73
Vocabulary 48
Voting Tabulation 150
When Saints Go Marchin” In = 140
Writing an Essay 156
Yo-Yo 104
DRAW 115
E notation 79
EDIT 53
Ellipse 109
ELSE 77
END 40
EOF 145
errors
0 ERROR 16
?2LS ERROR 66
{OS ERROR 65
SN ERROR 16
{TM ERROR 20
correcting a program line 26
correcting a typographical error 13
description of all error messages 250-51

265



EXP 177
exponentiation 174
exponents 79
extend, edit key 56
field specifiers See PRINT USING
FIX 177
flipping screens 103
foreground color 92
FOR ... NEXT 30
formulas, mathematical 252
functions
BASIC 263-64
derived 253
games 43
GET 123
GIVABF, ROM routine 199
GOSUB 60
graphics
memory 98, 102
resolution 99
screen 103
Graphics Screen Worksheet
grid 244-46
use of 85
green-on-black 18
grid, screen  See Graphics Screen
Worksheet, PRINT @ Worksheet,
SET/RESET Worksheet
grid size 99
hack, edit key 55
height/width ratio See CIRCLE
HEX$ 196
House, program 93, 108, 110, 113
Ice Cube, program 117
IF 40
information See Data
INKEY$ 71
INPUT 25
insert, edit key 55
INSTR 181
INT 50
INTCNV 220
Inventory Shopping List, program 238
joysticks 129
JOYSTK  See joysticks
kill, edit key 56
LEFT$ 66
LEN 65
LET 193
Lightning, program 106
LINE 89
LINE INPUT 186
line printer variables 255-56
LIST 24
list, edit key 53
LLIST 157
LOG 176
logarithm  See LOG
loops 30-39
lowercase codes 242-43
machine-language subroutines 197-200
returning values 201
stack space, use with USR 202

266

Mailing List, program 183
mathematical formulas 252
MEM 76
memory See also MEM, graphics memory
description 19
map 254
Memory Test, program 240
MID$ 67, 183
mistakes See errors
modes, DRAW parameter 115
motion commands, DRAW parameter 115
multiplication () 15
musical notes See PLAY
nested loop 37
NEXT 30
NOT, PUT parameter 125
notes, musical 134
numbers 15
numeric
arrays 150
data 21
octave See PLAY
Odds and Ends 205
ON GOSUB 76
ON GOTO 77
OPEN 145
operators
+, addition 15
<+, concatenation 65
—, subtraction 15
*, multiplication 15
/, division 15
(1D, exponentiation 174
AND, logical 78

OR, logical 78
options, DRAW parameter 115
OR

operator 78

PUT parameter 125
pages

clearing (PCLEAR) 104
description 102
copying (PCOPY) 105
PAINT 112

parentheses, rules on 63
pause-length  See PLAY
PCLEAR 104

PCLS 96

PCOPY 105

PEEK 131

PLAY 133

PMODE 98-106

POINT 127

POS 181

PPOINT 87

PRESET 87, 91

PRESET, PUT parameter 125
print

display (PRINT) 14
printer (PRINT #-2) 191
punctuation, rules on 27
recorder (PRINT #-1) 145
PRINT @ 45



PRINT @ Worksheet

grid 248
use of 45
printer

line printer variables 255-56
listing a program (LLIST) 157
printing data (PRINT #-2) 191
use of 157
PRINT USING 187
prompt 13
PSET 85
PSET, PUT parameter 125
PSET, LINE parameter 89
PUT 123
radians 173
READ 48
relative motion 117
renumber, program lines 57
RESET 127
resolution 99
RESTORE 49
RETURN 60
reversed characters 18, 158
RICHT$ 66
RND 43
Rolling Dice, program 45
ROM routines 257-59
RUN 24
Russian Roulette, program 44
sample programs 226-38
scale See PLAY
scale a display See DRAW
scientific notation  See E notation
search See EDIT
SCREEN 95
screen positions  See Graphics Screen
Worksheet, PRINT @ Worksheet,
SET/RESET Worksheet
SET 127
SET/RESET Worksheet
grid 247
use of 128
SGN 79
SIN 173
sine  See SIN
Sine Waves, program 174
sorting 159
SOUND 17, 33
Speed Reading, program 240
square root  See SQR
SQR 172
stack space, use w/mach-1 202
Star, program 116
start page 103
STEP 32
STOP 75
STR$ 79

string  See also LEFTS, LEN, MID$, RIGHTS

arrays 155

data 21

description 15, 20, 180
STRINGS$ 180

subscripted variables See arrays

subroutines  See GOSUB, machine-
language subroutines

TAN 175

tangent See TAN

taping 145

technical information See machine-

language subroutines, ROM routines,

memory map, printer variables
tempo  See PLAY
THEN 40
TIMER 194
tone, SOUND parameter 17
Triangle, program 172
trigonometry functions 172
TROFF 193
TRON 193
truncate  See FIX
Typing Test, program 73

USR 198

VAL 73

valid input ranges 254
variables

simple 19-22
subscripted  See arrays
VARPTR 200

video memory 95

Vocabulary, program 48

volume See PLAY

Voting Tabulation, program 150

When Saints Go Marchin’ In, program

whole numbers  See FIX, INT

Word Processing, program 157, 182

worksheets  See Graphics Screen
Worksheet, PRINT @ Worksheet,
SET/RESET Worksheet

Writing an Essay, program 156

Yo-Yo, program 104

140












RADIO SHACK g A DIVISION OF TANDY CORPORATION

U.S.A . CANADA
FORT WORTH, TEXAS 76102 BARRIE, ONTARIO, LAM4WS5




	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	085-098.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	057.pdf

	085-144.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf

	145-999.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	179-257.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf

	258-999.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf


	099-118.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf




